Reinforced Adversarial Attacks on Deep Neural Networks Using ADMM

Pu Zhao, Kaidi Xu, Tianyun Zhang, M. Fardad, Yanzhi Wang, X. Lin
{"title":"Reinforced Adversarial Attacks on Deep Neural Networks Using ADMM","authors":"Pu Zhao, Kaidi Xu, Tianyun Zhang, M. Fardad, Yanzhi Wang, X. Lin","doi":"10.1109/GLOBALSIP.2018.8646651","DOIUrl":null,"url":null,"abstract":"As deep learning penetrates into wide application domains, it is essential to evaluate the robustness of deep neural networks (DNNs) under adversarial attacks, especially for some security-critical applications. To better understand the security properties of DNNs, we propose a general framework for constructing adversarial examples, based on ADMM (Alternating Direction Method of Multipliers). This general framework can be adapted to implement L2 and L0 attacks with minor changes. Our ADMM attacks require less distortion for incorrect classification compared with C&W attacks. Our ADMM attack is also able to break defenses such as defensive distillation and adversarial training, and provide strong attack transferability.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBALSIP.2018.8646651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

As deep learning penetrates into wide application domains, it is essential to evaluate the robustness of deep neural networks (DNNs) under adversarial attacks, especially for some security-critical applications. To better understand the security properties of DNNs, we propose a general framework for constructing adversarial examples, based on ADMM (Alternating Direction Method of Multipliers). This general framework can be adapted to implement L2 and L0 attacks with minor changes. Our ADMM attacks require less distortion for incorrect classification compared with C&W attacks. Our ADMM attack is also able to break defenses such as defensive distillation and adversarial training, and provide strong attack transferability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ADMM的深度神经网络强化对抗性攻击
随着深度学习渗透到广泛的应用领域,评估深度神经网络(dnn)在对抗性攻击下的鲁棒性至关重要,特别是对于一些安全关键应用。为了更好地理解dnn的安全性,我们提出了一个基于ADMM(乘数交替方向法)的通用框架来构建对抗性示例。这个通用框架可以通过微小的修改来实现L2和L0攻击。与C&W攻击相比,我们的ADMM攻击对错误分类的扭曲程度更低。我们的ADMM攻击还能够突破防御蒸馏和对抗训练等防御,并提供强大的攻击可转移性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1