{"title":"Feature Space of Deep Learning and its Importance: Comparison of Clustering Techniques on the Extended Space of ML-ELM","authors":"R. Roul, Amit Agarwal","doi":"10.1145/3158354.3158359","DOIUrl":null,"url":null,"abstract":"Based on the architecture of deep learning, Multilayer Extreme Learning Machine (ML-ELM) has many good characteristics which make it distinct and widespread classifier in the domain of text mining. Some of its salient features include non-linear mapping of features into a high dimensional space, high level of data abstraction, no backpropagation, higher rate of learning etc. This paper studies the importance of ML-ELM feature space and tested the performance of various traditional clustering techniques on this feature space. Empirical results show the efficiency and effectiveness of the feature space of ML-ELM compared to TF-IDF vector space which justifies the prominence of deep learning.","PeriodicalId":306212,"journal":{"name":"Proceedings of the 9th Annual Meeting of the Forum for Information Retrieval Evaluation","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th Annual Meeting of the Forum for Information Retrieval Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3158354.3158359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Based on the architecture of deep learning, Multilayer Extreme Learning Machine (ML-ELM) has many good characteristics which make it distinct and widespread classifier in the domain of text mining. Some of its salient features include non-linear mapping of features into a high dimensional space, high level of data abstraction, no backpropagation, higher rate of learning etc. This paper studies the importance of ML-ELM feature space and tested the performance of various traditional clustering techniques on this feature space. Empirical results show the efficiency and effectiveness of the feature space of ML-ELM compared to TF-IDF vector space which justifies the prominence of deep learning.