{"title":"Deep neural network architectures for modulation classification","authors":"Xiaoyu Liu, Diyu Yang, A. E. Gamal","doi":"10.1109/ACSSC.2017.8335483","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the value of employing deep learning for the task of wireless signal modulation recognition. Recently in [1], a framework has been introduced by generating a dataset using GNU radio that mimics the imperfections in a real wireless channel, and uses 10 different modulation types. Further, a convolutional neural network (CNN) architecture was developed and shown to deliver performance that exceeds that of expert-based approaches. Here, we follow the framework of [1] and find deep neural network architectures that deliver higher accuracy than the state of the art. We tested the architecture of [1] and found it to achieve an accuracy of approximately 75% of correctly recognizing the modulation type. We first tune the CNN architecture of [1] and find a design with four convolutional layers and two dense layers that gives an accuracy of approximately 83.8% at high SNR. We then develop architectures based on the recently introduced ideas of Residual Networks (ResNet [2]) and Densely Connected Networks (DenseNet [3]) to achieve high SNR accuracies of approximately 83.5% and 86.6%, respectively. Finally, we introduce a Convolutional Long Short-term Deep Neural Network (CLDNN [4]) to achieve an accuracy of approximately 88.5% at high SNR.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"133","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 133
Abstract
In this work, we investigate the value of employing deep learning for the task of wireless signal modulation recognition. Recently in [1], a framework has been introduced by generating a dataset using GNU radio that mimics the imperfections in a real wireless channel, and uses 10 different modulation types. Further, a convolutional neural network (CNN) architecture was developed and shown to deliver performance that exceeds that of expert-based approaches. Here, we follow the framework of [1] and find deep neural network architectures that deliver higher accuracy than the state of the art. We tested the architecture of [1] and found it to achieve an accuracy of approximately 75% of correctly recognizing the modulation type. We first tune the CNN architecture of [1] and find a design with four convolutional layers and two dense layers that gives an accuracy of approximately 83.8% at high SNR. We then develop architectures based on the recently introduced ideas of Residual Networks (ResNet [2]) and Densely Connected Networks (DenseNet [3]) to achieve high SNR accuracies of approximately 83.5% and 86.6%, respectively. Finally, we introduce a Convolutional Long Short-term Deep Neural Network (CLDNN [4]) to achieve an accuracy of approximately 88.5% at high SNR.