A Lubrication Model of Elliptical Point Contact for Spiral Bevel Gears With Asymmetric Varying Velocity

Srikumar C. Gopalakrishnan, T. Lim, Yawen Wang
{"title":"A Lubrication Model of Elliptical Point Contact for Spiral Bevel Gears With Asymmetric Varying Velocity","authors":"Srikumar C. Gopalakrishnan, T. Lim, Yawen Wang","doi":"10.1115/detc2019-98142","DOIUrl":null,"url":null,"abstract":"\n In this work, elliptical contact is modeled in spiral bevel gear with a suitable ellipticity ratio. The elliptical point contact is modeled using constant velocity and varying velocity with side leakage. A loaded tooth contact analysis was carried out to determine the kinematic and gear mesh force developed during one mesh cycle. The kinematic parameters of the meshing gear pair, namely the contact cells, rolling velocity, sliding velocity and the load distribution in one mesh cycle are used in the elliptical point contact calculation to calculate the pressure and film thickness distribution. The effect of elliptical point contact and varying velocity on the pressure and film thickness distribution are studied. The time-varying contact parameters which are obtained from the tooth contact analysis are used in the tribological calculations. The effect of shaft misalignments on the elastohydrodynamic pressure distribution is also studied in this work.","PeriodicalId":159554,"journal":{"name":"Volume 10: 2019 International Power Transmission and Gearing Conference","volume":"265 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: 2019 International Power Transmission and Gearing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, elliptical contact is modeled in spiral bevel gear with a suitable ellipticity ratio. The elliptical point contact is modeled using constant velocity and varying velocity with side leakage. A loaded tooth contact analysis was carried out to determine the kinematic and gear mesh force developed during one mesh cycle. The kinematic parameters of the meshing gear pair, namely the contact cells, rolling velocity, sliding velocity and the load distribution in one mesh cycle are used in the elliptical point contact calculation to calculate the pressure and film thickness distribution. The effect of elliptical point contact and varying velocity on the pressure and film thickness distribution are studied. The time-varying contact parameters which are obtained from the tooth contact analysis are used in the tribological calculations. The effect of shaft misalignments on the elastohydrodynamic pressure distribution is also studied in this work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非对称变速螺旋锥齿轮椭圆点接触润滑模型
选取合适的椭圆比,建立了螺旋锥齿轮的椭圆接触模型。采用等速和带侧漏的变速椭圆点接触模型。进行了加载齿接触分析,以确定在一个啮合周期内产生的运动和齿轮啮合力。在椭圆点接触计算中,采用啮合齿轮副的运动参数,即接触单元、滚动速度、滑动速度和一个啮合周期内的载荷分布来计算压力和膜厚分布。研究了椭圆点接触和变速度对压力和膜厚分布的影响。从齿接触分析中得到的时变接触参数用于摩擦学计算。本文还研究了轴向偏差对弹流动压分布的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stylization for Gear Tooth Surfaces With Different Machining Processes Using Graphic Analysis Applicability of an Oil Based Calculation Approach for Wear Risk and Wear Lifetime to Grease Lubricated Gear Pairings Geometric Design of Pure Rolling Rack and Pinion Mechanisms Calibration Experiments on a Visual Measurement System for Pinion Gears Design Optimization of a Three-Stage Planetary Gear Reducer Using Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1