{"title":"RFID-based compound identification in wet laboratories with google glass","authors":"P. Scholl, Tobias Schultes, Kristof Van Laerhoven","doi":"10.1145/2790044.2790055","DOIUrl":null,"url":null,"abstract":"Experimentation in Wet Laboratories requires tracking and identification of small containers like test tubes, flasks, and bottles. The current practise involves colored adhesive markers, waterproof hand-writing, QR- and Barcodes, or RFID-Tags. These markers are often not self-descriptive and require a lookup table on paper or some digitally stored counterpart. Furthermore they are subject to harsh environmental conditions (e.g. samples are kept in a freezer), and can be hard to share with other lab workers for lack of a consistent annotation systems. Increasing their durability, as well as providing a central tracking system for these containers, is therefore of great interest. In this paper we present a system for the implicit tracking of RFID-augmented containers with a wrist-worn reader unit, and a voice-interaction scheme based on a head-mounted display.","PeriodicalId":351171,"journal":{"name":"Proceedings of the 2nd international Workshop on Sensor-based Activity Recognition and Interaction","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd international Workshop on Sensor-based Activity Recognition and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2790044.2790055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Experimentation in Wet Laboratories requires tracking and identification of small containers like test tubes, flasks, and bottles. The current practise involves colored adhesive markers, waterproof hand-writing, QR- and Barcodes, or RFID-Tags. These markers are often not self-descriptive and require a lookup table on paper or some digitally stored counterpart. Furthermore they are subject to harsh environmental conditions (e.g. samples are kept in a freezer), and can be hard to share with other lab workers for lack of a consistent annotation systems. Increasing their durability, as well as providing a central tracking system for these containers, is therefore of great interest. In this paper we present a system for the implicit tracking of RFID-augmented containers with a wrist-worn reader unit, and a voice-interaction scheme based on a head-mounted display.