Pierre-Edouard Osche, Sylvain Castagnos, A. Napoli, Y. Naudet
{"title":"Walk the line: Toward an efficient user model for recommendations in museums","authors":"Pierre-Edouard Osche, Sylvain Castagnos, A. Napoli, Y. Naudet","doi":"10.1109/SMAP.2016.7753389","DOIUrl":null,"url":null,"abstract":"Contrary to many application domains, recommending items within a museum is not only a question of preferences. Of course, the visitors expect suggestions that are likely to interest or please them. However, additional factors should be taken into account. Recent works use the visiting styles [1] or the shortest distance between items [2] to adapt the list of recommendations. But, as far as we know, no model of the literature aims at inferring in real time an holistic user model which includes variables such as the crowd tolerance, the distance tolerance, the expected user control, the fatigue, the congestion points, etc. As a work-in-progress, we propose a new representation model which includes psychological, physical and social variables so as to increase user satisfaction and enjoyment. We show how we can infer these characteristics from the user observations (geolocalization over time, moving speed, ...) and we discuss how we can use them jointly for a sequence recommendation purpose. This work is still in an early stage of development and remains more theoretical than experimental.","PeriodicalId":247696,"journal":{"name":"2016 11th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMAP.2016.7753389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Contrary to many application domains, recommending items within a museum is not only a question of preferences. Of course, the visitors expect suggestions that are likely to interest or please them. However, additional factors should be taken into account. Recent works use the visiting styles [1] or the shortest distance between items [2] to adapt the list of recommendations. But, as far as we know, no model of the literature aims at inferring in real time an holistic user model which includes variables such as the crowd tolerance, the distance tolerance, the expected user control, the fatigue, the congestion points, etc. As a work-in-progress, we propose a new representation model which includes psychological, physical and social variables so as to increase user satisfaction and enjoyment. We show how we can infer these characteristics from the user observations (geolocalization over time, moving speed, ...) and we discuss how we can use them jointly for a sequence recommendation purpose. This work is still in an early stage of development and remains more theoretical than experimental.