Machine learning approach for segmenting glands in colon histology images using local intensity and texture features

Rupali Khatun, S. Chatterjee
{"title":"Machine learning approach for segmenting glands in colon histology images using local intensity and texture features","authors":"Rupali Khatun, S. Chatterjee","doi":"10.1109/IADCC.2018.8692135","DOIUrl":null,"url":null,"abstract":"Colon Cancer is one of the most common types of cancer. The treatment is planned to depend on the grade or stage of cancer. One of the preconditions for grading of colon cancer is to segment the glandular structures of tissues. Manual segmentation method is very time-consuming, and it leads to life risk for the patients. The principal objective of this project is to assist the pathologist to accurate detection of colon cancer. In this paper, the authors have proposed an algorithm for an automatic segmentation of glands in colon histology using local intensity and texture features. Here the dataset images are cropped into patches with different window sizes and taken the intensity of those patches, and also calculated texture-based features. Random forest classifier has been used to classify this patch into different labels. A multilevel random forest technique in a hierarchical way is proposed. This solution is fast, accurate and it is very much applicable in a clinical setup.","PeriodicalId":365713,"journal":{"name":"2018 IEEE 8th International Advance Computing Conference (IACC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 8th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2018.8692135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Colon Cancer is one of the most common types of cancer. The treatment is planned to depend on the grade or stage of cancer. One of the preconditions for grading of colon cancer is to segment the glandular structures of tissues. Manual segmentation method is very time-consuming, and it leads to life risk for the patients. The principal objective of this project is to assist the pathologist to accurate detection of colon cancer. In this paper, the authors have proposed an algorithm for an automatic segmentation of glands in colon histology using local intensity and texture features. Here the dataset images are cropped into patches with different window sizes and taken the intensity of those patches, and also calculated texture-based features. Random forest classifier has been used to classify this patch into different labels. A multilevel random forest technique in a hierarchical way is proposed. This solution is fast, accurate and it is very much applicable in a clinical setup.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用局部强度和纹理特征分割结肠组织学图像中腺体的机器学习方法
结肠癌是最常见的癌症之一。治疗计划取决于癌症的等级或阶段。结肠癌分级的先决条件之一是组织腺结构的分割。人工分割的方法非常耗时,而且会给患者带来生命风险。该项目的主要目的是协助病理学家准确检测结肠癌。本文提出了一种利用局部强度和纹理特征对结肠组织腺体进行自动分割的算法。在这里,数据集图像被裁剪成不同窗口大小的补丁,并获取这些补丁的强度,并计算基于纹理的特征。使用随机森林分类器将该贴片分类为不同的标签。提出了一种分层的多层随机森林技术。该解决方案快速,准确,非常适用于临床设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovering Motifs in DNA Sequences: A Suffix Tree Based Approach Prediction Model for Automated Leaf Disease Detection & Analysis Blind navigation using ambient crowd analysis HUPM: Efficient High Utility Pattern Mining Algorithm for E-Business Algorithm to Quantify the Low and High Resolution HLA Matching in Renal Transplantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1