Epilepsy Detection in EEG Signal using Recurrent Neural Network

I. Aliyu, Y. B. Lim, C. Lim
{"title":"Epilepsy Detection in EEG Signal using Recurrent Neural Network","authors":"I. Aliyu, Y. B. Lim, C. Lim","doi":"10.1145/3325773.3325785","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a Recurrent Neural Network (RNN) for the classification of epileptic EEG signal. The EEG dataset is first preprocessed using Discrete Wavelet Transform (DWT) to remove noise and extract features. 20 eigenvalues features were extracted and used to train and test our model. Several experiments were conducted to obtain the optimal parameters for the model. Our model was then compared against Logistic Regression (LR), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF) and Decision Tree (DT). From experimental results, the best generalization of 99% accuracy is obtained with RMSprop at 0.20 dropout and 4 hidden layers for our model. DT classifier performed second best with accuracy of 98% while RF performed the worst at 75% accuracy.","PeriodicalId":419017,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3325773.3325785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In this paper, we proposed a Recurrent Neural Network (RNN) for the classification of epileptic EEG signal. The EEG dataset is first preprocessed using Discrete Wavelet Transform (DWT) to remove noise and extract features. 20 eigenvalues features were extracted and used to train and test our model. Several experiments were conducted to obtain the optimal parameters for the model. Our model was then compared against Logistic Regression (LR), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF) and Decision Tree (DT). From experimental results, the best generalization of 99% accuracy is obtained with RMSprop at 0.20 dropout and 4 hidden layers for our model. DT classifier performed second best with accuracy of 98% while RF performed the worst at 75% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用递归神经网络检测脑电图信号中的癫痫
本文提出了一种用于癫痫脑电信号分类的递归神经网络(RNN)。首先利用离散小波变换(DWT)对EEG数据集进行预处理,去除噪声,提取特征;提取了20个特征值特征并用于训练和测试我们的模型。为了获得模型的最优参数,进行了多次实验。然后将我们的模型与逻辑回归(LR)、支持向量机(SVM)、k近邻(KNN)、随机森林(RF)和决策树(DT)进行比较。从实验结果来看,当RMSprop为0.20 dropout和4个隐藏层时,我们的模型得到了99%准确率的最佳泛化。DT分类器表现第二好,准确率为98%,而RF表现最差,准确率为75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Online Password Guessing Method Based on Big Data Feature-Weighted Fuzzy K-Modes Clustering Epilepsy Detection in EEG Signal using Recurrent Neural Network Analysis of Ant Colony Optimization on a Dynamically Changing Optical Burst Switched Network with Impairments Gaussian Process Dynamical Autoencoder Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1