Ultrafast embedded explicit model predictive control for nonlinear systems

Arnab Raha, A. Chakrabarty, V. Raghunathan, G. Buzzard
{"title":"Ultrafast embedded explicit model predictive control for nonlinear systems","authors":"Arnab Raha, A. Chakrabarty, V. Raghunathan, G. Buzzard","doi":"10.23919/ACC.2017.7963632","DOIUrl":null,"url":null,"abstract":"The design of energy-efficient and ultrafast nonlinear model predictive controllers (NMPCs) is critical for decision-making in modern engineering systems. To this end, an embedded systems approach is proposed for hardware acceleration of a stabilizing explicit NMPC (ENMPC). Tools from approximate computing are employed to simplify the ENMPC control law and design an ultra-fast, low-power, miniaturized ASIC (application specific integrated circuit) deploying the control mechanism. Approximation bounds on the embedded controller and stability guarantees of the closed-loop system are provided. The efficacy and energy-savings of the embedded ENMPC is verified in an ASIC-in-the-loop simulation experiment. Whereas the exact ENMPC law requires 79K gates for implementation, consumes 13.66 mW of power, and operates at 0.3 GHz on 45 nm Nangate technology, the approximating ASIC requires only 3.6K gates (resulting in a 25× area reduction), consumes a meager 0.47 mW of power (29× power reduction), and runs at 0.5 GHz (more than 105× faster than cutting-edge embedded NMPCs).","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The design of energy-efficient and ultrafast nonlinear model predictive controllers (NMPCs) is critical for decision-making in modern engineering systems. To this end, an embedded systems approach is proposed for hardware acceleration of a stabilizing explicit NMPC (ENMPC). Tools from approximate computing are employed to simplify the ENMPC control law and design an ultra-fast, low-power, miniaturized ASIC (application specific integrated circuit) deploying the control mechanism. Approximation bounds on the embedded controller and stability guarantees of the closed-loop system are provided. The efficacy and energy-savings of the embedded ENMPC is verified in an ASIC-in-the-loop simulation experiment. Whereas the exact ENMPC law requires 79K gates for implementation, consumes 13.66 mW of power, and operates at 0.3 GHz on 45 nm Nangate technology, the approximating ASIC requires only 3.6K gates (resulting in a 25× area reduction), consumes a meager 0.47 mW of power (29× power reduction), and runs at 0.5 GHz (more than 105× faster than cutting-edge embedded NMPCs).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性系统的超快速嵌入式显式模型预测控制
设计高效、快速的非线性模型预测控制器(NMPCs)是现代工程系统决策的关键。为此,提出了一种嵌入式系统方法来实现稳定显式NMPC (ENMPC)的硬件加速。采用近似计算工具简化ENMPC控制律,并设计了一种超高速、低功耗、小型化的专用集成电路(ASIC)来部署控制机制。给出了嵌入式控制器的逼近界和闭环系统的稳定性保证。通过asic在环仿真实验验证了嵌入式ENMPC的有效性和节能性。而精确的ENMPC定律需要79K门来实现,消耗13.66 mW的功率,并在45 nm Nangate技术上工作在0.3 GHz,近似的ASIC只需要3.6K门(导致面积减少25倍),消耗微不足道的0.47 mW功率(减少29倍功率),运行在0.5 GHz(比尖端嵌入式nmpc快105倍以上)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary and semi-plenary sessions Spatial Iterative Learning Control: Systems with input saturation Distributed Second Order Sliding Modes for Optimal Load Frequency Control Adaptive optimal observer design via approximate dynamic programming Nonlinear adaptive stabilization of a class of planar slow-fast systems at a non-hyperbolic point
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1