Satellite image fusion using undecimated rotated wavelet transform

R. G. Tambe, S. Talbar, S. Chavan
{"title":"Satellite image fusion using undecimated rotated wavelet transform","authors":"R. G. Tambe, S. Talbar, S. Chavan","doi":"10.1504/IJCSE.2021.115103","DOIUrl":null,"url":null,"abstract":"This paper presents two satellite image fusion algorithms namely decimated/subsampled rotated wavelet transform (SSRWT) and undecimated/non-subsampled rotated wavelet transform (NSRWT) using 2D rotated wavelet filters for extracting relevant and pragmatic information from MS and PAN images. Three major visual artefacts such as colour distortion, shifting effects and shift distortion are identified in the fused images obtained using SSRWT which are addressed by using NSRWT. The proposed NSRWT algorithm preserves spatial and spectral features of the source MS and PAN images resulting fused image with better fusion performance. The final fused image provides richer information (in terms of spatial and spectral quality) than that of the original input images. The experimental results strongly reveal that undecimated fusion algorithm (NSRWT) not only performs better than decimated fusion algorithm (SSRWT) but also improves spatial and spectral quality of the fused images.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSE.2021.115103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents two satellite image fusion algorithms namely decimated/subsampled rotated wavelet transform (SSRWT) and undecimated/non-subsampled rotated wavelet transform (NSRWT) using 2D rotated wavelet filters for extracting relevant and pragmatic information from MS and PAN images. Three major visual artefacts such as colour distortion, shifting effects and shift distortion are identified in the fused images obtained using SSRWT which are addressed by using NSRWT. The proposed NSRWT algorithm preserves spatial and spectral features of the source MS and PAN images resulting fused image with better fusion performance. The final fused image provides richer information (in terms of spatial and spectral quality) than that of the original input images. The experimental results strongly reveal that undecimated fusion algorithm (NSRWT) not only performs better than decimated fusion algorithm (SSRWT) but also improves spatial and spectral quality of the fused images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于未消差旋转小波变换的卫星图像融合
本文提出了两种卫星图像融合算法,即抽取/下采样旋转小波变换(SSRWT)和非抽取/非下采样旋转小波变换(NSRWT),利用二维旋转小波滤波器从MS和PAN图像中提取相关和实用信息。在融合图像中识别出了三种主要的视觉伪影,即颜色失真、偏移效应和偏移失真。提出的NSRWT算法保留了源MS和PAN图像的空间和光谱特征,使融合图像具有更好的融合性能。最终的融合图像提供了比原始输入图像更丰富的信息(在空间和光谱质量方面)。实验结果表明,非消去融合算法(NSRWT)不仅比消去融合算法(SSRWT)性能更好,而且能提高融合图像的空间和光谱质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECC-based lightweight mutual authentication protocol for fog enabled IoT system using three-way authentication procedure Gene selection and classification combining information gain ratio with fruit fly optimisation algorithm for single-cell RNA-seq data Attitude control of an unmanned patrol helicopter based on an optimised spiking neural membrane system for use in coal mines CEMP-IR: a novel location aware cache invalidation and replacement policy Prediction of consumer preference for the bottom of the pyramid using EEG-based deep model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1