Convolutional neural networks and multimodal fusion for text aided image classification

Dongzhe Wang, K. Mao, G. Ng
{"title":"Convolutional neural networks and multimodal fusion for text aided image classification","authors":"Dongzhe Wang, K. Mao, G. Ng","doi":"10.23919/ICIF.2017.8009768","DOIUrl":null,"url":null,"abstract":"With the exponential growth of web meta-data, exploiting multimodal online sources via standard search engine has become a trend in visual recognition as it effectively alleviates the shortage of training data. However, the web meta-data such as text data is usually not as cooperative as expected due to its unstructured nature. To address this problem, this paper investigates the numerical representation of web text data. We firstly adopt convolutional neural network (CNN) for web text modeling on top of word vectors. Combined with CNN for image, we present a multimodal fusion to maximize the discriminative power of visual and textual modality data for decision level and feature level simultaneously. Experimental results show that the proposed framework achieves significant improvement in large-scale image classification on Pascal VOC-2007 and VOC-2012 datasets.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

With the exponential growth of web meta-data, exploiting multimodal online sources via standard search engine has become a trend in visual recognition as it effectively alleviates the shortage of training data. However, the web meta-data such as text data is usually not as cooperative as expected due to its unstructured nature. To address this problem, this paper investigates the numerical representation of web text data. We firstly adopt convolutional neural network (CNN) for web text modeling on top of word vectors. Combined with CNN for image, we present a multimodal fusion to maximize the discriminative power of visual and textual modality data for decision level and feature level simultaneously. Experimental results show that the proposed framework achieves significant improvement in large-scale image classification on Pascal VOC-2007 and VOC-2012 datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络和多模态融合的文本辅助图像分类
随着网络元数据的指数级增长,通过标准搜索引擎开发多模式在线资源,有效地缓解了训练数据的不足,已成为视觉识别的发展趋势。然而,web元数据(如文本数据)由于其非结构化的特性,通常不像预期的那样具有协作性。为了解决这个问题,本文研究了网络文本数据的数字表示。首先在词向量的基础上,采用卷积神经网络(CNN)对web文本进行建模。结合图像的CNN,提出了一种多模态融合方法,使决策层和特征层的视觉模态和文本模态数据的判别能力最大化。实验结果表明,该框架在Pascal VOC-2007和VOC-2012数据集上的大规模图像分类性能有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning for situational understanding Event state based particle filter for ball event detection in volleyball game analysis Hybrid regularization for compressed sensing MRI: Exploiting shearlet transform and group-sparsity total variation A risk-based sensor management using random finite sets and POMDP Track a smoothly maneuvering target based on trajectory estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1