{"title":"Modelocked Microchip Laser With Millimeter Wave Subcarrier","authors":"P. Herczfeld, A. Vieira, V. Contarino","doi":"10.1109/MWP.1997.740227","DOIUrl":null,"url":null,"abstract":"Introduction There is increased demand for high speed fiberoptic links operating in the millimeter wave range with good noise figure and high dynamic range [1,2]. These links are used in data communications, multimedia signal distribution, providing fiberoptic access to wireless communications, as well as radar and remote sensing. Most commonly used millimeter-wave subcarrier sources are actively or passively modelocked semiconductor lasers. They are small, compact but have undesirably high chirp and phase noise. Mode locked fiber lasers provide high performance, but are bulky. In this paper we describe a compact mode locked Nd: LiNb03 microchip laser incorporated into a microwave cavity. The significant novelty of this approach is that the same medium, the Nd: L imo3 crystal, serves the gain medium as well as the phase modulator, in microchip configuration. Experimental results include mode locking at 40GHz and a phase noise of -1 lOdBc/Hz at 1kJ& offset. The presentation will also include an analysis of the mode locking in this device.","PeriodicalId":280865,"journal":{"name":"International Topical Meeting on Microwave Photonics (MWP1997)","volume":"299 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Topical Meeting on Microwave Photonics (MWP1997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWP.1997.740227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Introduction There is increased demand for high speed fiberoptic links operating in the millimeter wave range with good noise figure and high dynamic range [1,2]. These links are used in data communications, multimedia signal distribution, providing fiberoptic access to wireless communications, as well as radar and remote sensing. Most commonly used millimeter-wave subcarrier sources are actively or passively modelocked semiconductor lasers. They are small, compact but have undesirably high chirp and phase noise. Mode locked fiber lasers provide high performance, but are bulky. In this paper we describe a compact mode locked Nd: LiNb03 microchip laser incorporated into a microwave cavity. The significant novelty of this approach is that the same medium, the Nd: L imo3 crystal, serves the gain medium as well as the phase modulator, in microchip configuration. Experimental results include mode locking at 40GHz and a phase noise of -1 lOdBc/Hz at 1kJ& offset. The presentation will also include an analysis of the mode locking in this device.