A Survey of Online Sequential Extreme Learning Machine

Senyue Zhang, Wenan Tan, Yibo Li
{"title":"A Survey of Online Sequential Extreme Learning Machine","authors":"Senyue Zhang, Wenan Tan, Yibo Li","doi":"10.1109/CoDIT.2018.8394791","DOIUrl":null,"url":null,"abstract":"Online sequential extreme learning machine (OS-ELM) can learn the data one-by-one or chunk-by-chunk with the fixed or varying chunk size. It was proposed by Liang et al. is a faster and more accurate algorithm as compared to other online learning algorithms. However, besides the advantages of OS-ELM machine, the original OS-ELM algorithm also introced some issues; first, the improved OS-ELM algorithms need to be network structure adjustment to improve learning promance; second, OS-ELM algorithm learning with stability will affect its generalization ability. For such reasons, in this paper we propose a survey of OS-ELM algorithm with the development of history and the latest results of researching which can hopefully support researchers in the furture.","PeriodicalId":128011,"journal":{"name":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"237 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT.2018.8394791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Online sequential extreme learning machine (OS-ELM) can learn the data one-by-one or chunk-by-chunk with the fixed or varying chunk size. It was proposed by Liang et al. is a faster and more accurate algorithm as compared to other online learning algorithms. However, besides the advantages of OS-ELM machine, the original OS-ELM algorithm also introced some issues; first, the improved OS-ELM algorithms need to be network structure adjustment to improve learning promance; second, OS-ELM algorithm learning with stability will affect its generalization ability. For such reasons, in this paper we propose a survey of OS-ELM algorithm with the development of history and the latest results of researching which can hopefully support researchers in the furture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线顺序极限学习机研究进展
在线顺序极限学习机(OS-ELM)可以对固定或变化块大小的数据进行一个一个或一个块的学习。由Liang等人提出的与其他在线学习算法相比,它是一种更快、更准确的算法。然而,除了OS-ELM机器的优点外,原有的OS-ELM算法也引入了一些问题;首先,改进后的OS-ELM算法需要对网络结构进行调整以提高学习性能;其次,OS-ELM算法学习不稳定会影响其泛化能力。因此,本文对OS-ELM算法的发展历史和最新研究成果进行了综述,希望能对今后的研究人员有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractional—PD controllers design for LTI-systems with time-delay. A geometric approach Modelling of a Bio-Inspired Knee Joint and Design of an Energy Saving Exoskeleton Based on Performance Maps Optimisation for Condylar Knee Prosthetics Path Planning and Task Assignment for Data Retrieval from Wireless Sensor Nodes Relying on Game-Theoretic Learning Open Source Analytics Solutions for Maintenance Detection and Characterization of Subsolid Juxta-pleural Lung Nodule from CT Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1