Spectrum coordination for intelligent wireless Internet of Things networks

Z. Nikolic, M. Tosic, N. Milosevic, Valentina Nejkovic, F. Jelenkovic
{"title":"Spectrum coordination for intelligent wireless Internet of Things networks","authors":"Z. Nikolic, M. Tosic, N. Milosevic, Valentina Nejkovic, F. Jelenkovic","doi":"10.1109/TELFOR.2017.8249326","DOIUrl":null,"url":null,"abstract":"Diversity of radio access technologies, such as ZigBee, Bluetooth, LTE and Wi-Fi, together with growing requirements for their simultaneous use, significantly increase complexity of Internet of Things (IoT) wireless networks. A number of open challenges affect practical deployments, such as simultaneous use of multiple technologies, intelligent coordination of a subset of nodes, coexistence of different technologies using the same spectrum, efficient management of (simultaneously used) heterogeneous radio links, etc. This paper will consider Semantic Technology (ST), as a promising approach to coordination in such complex wireless infrastructures, especially in cases where interference models are not well understood. A Neural Network (NN) will be used for the network state estimation and ST for reasoning about required actions. It is based on semantic data sets mining such that coordination decisions may be driven by predictions instead of using physical spectrum sensing devices. ST facilitates reasoning about coordination, application priority, frequency selection and dynamic spectrum access. Because of capability of the NN to solve regression and classification problems, potentially problematic network states could be proactively avoided instead of reactively corrected particularly in priority critical applications.","PeriodicalId":422501,"journal":{"name":"2017 25th Telecommunication Forum (TELFOR)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Telecommunication Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR.2017.8249326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Diversity of radio access technologies, such as ZigBee, Bluetooth, LTE and Wi-Fi, together with growing requirements for their simultaneous use, significantly increase complexity of Internet of Things (IoT) wireless networks. A number of open challenges affect practical deployments, such as simultaneous use of multiple technologies, intelligent coordination of a subset of nodes, coexistence of different technologies using the same spectrum, efficient management of (simultaneously used) heterogeneous radio links, etc. This paper will consider Semantic Technology (ST), as a promising approach to coordination in such complex wireless infrastructures, especially in cases where interference models are not well understood. A Neural Network (NN) will be used for the network state estimation and ST for reasoning about required actions. It is based on semantic data sets mining such that coordination decisions may be driven by predictions instead of using physical spectrum sensing devices. ST facilitates reasoning about coordination, application priority, frequency selection and dynamic spectrum access. Because of capability of the NN to solve regression and classification problems, potentially problematic network states could be proactively avoided instead of reactively corrected particularly in priority critical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能无线物联网网络的频谱协调
无线接入技术的多样性,如ZigBee、蓝牙、LTE和Wi-Fi,以及同时使用这些技术的需求不断增长,大大增加了物联网(IoT)无线网络的复杂性。许多开放的挑战影响了实际部署,例如多种技术的同时使用、节点子集的智能协调、使用相同频谱的不同技术的共存、(同时使用的)异构无线电链路的有效管理等。本文将考虑语义技术(ST),作为在这种复杂的无线基础设施中进行协调的一种有前途的方法,特别是在干扰模型没有很好理解的情况下。神经网络(NN)用于网络状态估计,ST用于所需动作的推理。它基于语义数据集挖掘,使得协调决策可以由预测驱动,而不是使用物理频谱传感设备。ST有助于对协调、应用优先级、频率选择和动态频谱接入进行推理。由于神经网络解决回归和分类问题的能力,特别是在优先级关键应用中,可以主动避免潜在的问题网络状态,而不是被动地纠正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposing bat inspired heuristic algorithm for the optimization of GMPLS networks Investigation on temporal skewing among O-CDMA code carriers under fiber temperature variations Survey on machine learning algorithms as cloud service for CIDPS Identity provider deployment based on container technology Enhanced bandwidth PIFA antennas for 900/1800 MHz and WiFi 2400 MHz band with a dielectric cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1