Improving Performance of Medical Images Retrieval by Combining Textual and Visual Information

M. Díaz-Galiano, M. Martín-Valdivia, A. Montejo-Ráez, L.A. Urea-Lopez
{"title":"Improving Performance of Medical Images Retrieval by Combining Textual and Visual Information","authors":"M. Díaz-Galiano, M. Martín-Valdivia, A. Montejo-Ráez, L.A. Urea-Lopez","doi":"10.1109/MICAI.2007.12","DOIUrl":null,"url":null,"abstract":"This paper studies the combination of textual and visual information in a database of medical records in order to improve the performance of the multi-modal information retrieval system. The proposed model consists of two subsystems: a content-based information retrieval subsystem that performs the image retrieval and a textual information retrieval subsystem that performs the textual retrieval. The images and text are independently retrieved and then the partial resulting lists are mixed. A study of different weighting schemes has been accomplished and analyzed. The results obtained show that the proper integration of textual information improves conventional multi-modal systems.","PeriodicalId":296192,"journal":{"name":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2007.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper studies the combination of textual and visual information in a database of medical records in order to improve the performance of the multi-modal information retrieval system. The proposed model consists of two subsystems: a content-based information retrieval subsystem that performs the image retrieval and a textual information retrieval subsystem that performs the textual retrieval. The images and text are independently retrieved and then the partial resulting lists are mixed. A study of different weighting schemes has been accomplished and analyzed. The results obtained show that the proper integration of textual information improves conventional multi-modal systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合文本和视觉信息提高医学图像检索性能
为了提高多模态信息检索系统的性能,本文研究了病案数据库中文本信息与视觉信息的结合。该模型由两个子系统组成:执行图像检索的基于内容的信息检索子系统和执行文本检索的文本信息检索子系统。图像和文本独立检索,然后混合部分结果列表。对不同的权重方案进行了研究和分析。结果表明,文本信息的适当整合改善了传统的多模态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Tools to Time Series Forecasting Algorithm for Affective Pattern Recognition by Means of Use of First Initial Momentum Uncertain Reasoning in Multi-agent Ontology Mapping on the Semantic Web Segmentation and Extraction of Morphologic Features from Capillary Images An Intelligent Agent Using a Q-Learning Method to Allocate Replicated Data in a Distributed Database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1