{"title":"Simplified Fokker-Plank Equation Treatment of Finite-temperature Spin-torque Problems","authors":"Xia Jianbai, Wen Hongyu","doi":"10.11648/J.AJPA.20190702.14","DOIUrl":null,"url":null,"abstract":"A Legendre function expansion method is proposed to solve the simplified Fokker-Plank equation to study the dynamics of a macrospin under spin-torque-driven magnetic reversal at finite temperature. The first and second eigenvalues (λτ0)1 and (λτ0)2 as functions of I/Ic and Hk are obtained, in agreement with the previous results using the Taylor series expansion method. The Legendre function expansion method compared with the Taylor series expansion method has faster convergence properties and clear physical means. Besides, it is found that in some case, especially the second eigenvalue (λτ0)2 can become complex, that means that the probability density P not only decays with time, but also oscillates with time.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20190702.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A Legendre function expansion method is proposed to solve the simplified Fokker-Plank equation to study the dynamics of a macrospin under spin-torque-driven magnetic reversal at finite temperature. The first and second eigenvalues (λτ0)1 and (λτ0)2 as functions of I/Ic and Hk are obtained, in agreement with the previous results using the Taylor series expansion method. The Legendre function expansion method compared with the Taylor series expansion method has faster convergence properties and clear physical means. Besides, it is found that in some case, especially the second eigenvalue (λτ0)2 can become complex, that means that the probability density P not only decays with time, but also oscillates with time.