{"title":"A recommender system based on the collaborative behavior of bird flocks","authors":"Esin Saka, O. Nasraoui","doi":"10.4108/ICST.COLLABORATECOM.2010.11","DOIUrl":null,"url":null,"abstract":"This paper proposes a swarm intelligence based recommender system (FlockRecom) based on the collaborative behavior of bird flocks for generating Top-N recommendations. The flock-based recommender algorithm (FlockRecom) iteratively adjusts the position and speed of dynamic flocks of agents on a visualization panel. By using the neighboring agents on the visualization panel, top-n recommendations are generated. The performance of FlockRecom is evaluated using the Jester Dataset-2 and is compared with a traditional collaborative filtering based recommender system. Experiments on real data illustrate the workings of the recommender system and its advantages over its CF baseline.","PeriodicalId":354101,"journal":{"name":"6th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2010)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.COLLABORATECOM.2010.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper proposes a swarm intelligence based recommender system (FlockRecom) based on the collaborative behavior of bird flocks for generating Top-N recommendations. The flock-based recommender algorithm (FlockRecom) iteratively adjusts the position and speed of dynamic flocks of agents on a visualization panel. By using the neighboring agents on the visualization panel, top-n recommendations are generated. The performance of FlockRecom is evaluated using the Jester Dataset-2 and is compared with a traditional collaborative filtering based recommender system. Experiments on real data illustrate the workings of the recommender system and its advantages over its CF baseline.