A recommender system based on the collaborative behavior of bird flocks

Esin Saka, O. Nasraoui
{"title":"A recommender system based on the collaborative behavior of bird flocks","authors":"Esin Saka, O. Nasraoui","doi":"10.4108/ICST.COLLABORATECOM.2010.11","DOIUrl":null,"url":null,"abstract":"This paper proposes a swarm intelligence based recommender system (FlockRecom) based on the collaborative behavior of bird flocks for generating Top-N recommendations. The flock-based recommender algorithm (FlockRecom) iteratively adjusts the position and speed of dynamic flocks of agents on a visualization panel. By using the neighboring agents on the visualization panel, top-n recommendations are generated. The performance of FlockRecom is evaluated using the Jester Dataset-2 and is compared with a traditional collaborative filtering based recommender system. Experiments on real data illustrate the workings of the recommender system and its advantages over its CF baseline.","PeriodicalId":354101,"journal":{"name":"6th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2010)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.COLLABORATECOM.2010.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposes a swarm intelligence based recommender system (FlockRecom) based on the collaborative behavior of bird flocks for generating Top-N recommendations. The flock-based recommender algorithm (FlockRecom) iteratively adjusts the position and speed of dynamic flocks of agents on a visualization panel. By using the neighboring agents on the visualization panel, top-n recommendations are generated. The performance of FlockRecom is evaluated using the Jester Dataset-2 and is compared with a traditional collaborative filtering based recommender system. Experiments on real data illustrate the workings of the recommender system and its advantages over its CF baseline.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于鸟群协同行为的推荐系统
本文提出了一种基于群智能的推荐系统(FlockRecom),该系统基于鸟群的协同行为生成Top-N推荐。基于群体的推荐算法(FlockRecom)迭代地调整可视化面板上动态群体的位置和速度。通过使用可视化面板上的相邻代理,生成top-n的建议。使用Jester Dataset-2对FlockRecom的性能进行了评估,并与传统的基于协同过滤的推荐系统进行了比较。在实际数据上的实验说明了推荐系统的工作原理及其相对于CF基线的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A collaborative framework for privacy protection in online social networks Information flow control in cloud computing Enhancing personalized ranking quality through multidimensional modeling of inter-item competition CAEVA: A customizable and adaptive event aggregation framework for collaborative broker overlays Collaborative information finding in smaller communities: The case of research talks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1