Enhancing personalized ranking quality through multidimensional modeling of inter-item competition

Qinyuan Feng, Ling Liu, Y. Sun, Ting Yu, Yafei Dai
{"title":"Enhancing personalized ranking quality through multidimensional modeling of inter-item competition","authors":"Qinyuan Feng, Ling Liu, Y. Sun, Ting Yu, Yafei Dai","doi":"10.4108/ICST.COLLABORATECOM.2010.14","DOIUrl":null,"url":null,"abstract":"This paper presents MAPS — a personalized Multi-Attribute Probabilistic Selection framework — to estimate the probability of an item being a user's best choice and rank the items accordingly. The MAPS framework makes three original contributions in this paper. First, we capture the inter-attribute tradeoff by a visual angle model which maps multi-attribute items into points (stars) in a multidimensional space (sky). Second, we model the inter-item competition using the dominating areas of the stars. Third, we capture the user's personal preferences by a density function learned from his/her history. The MAPS framework carefully combines all three factors to estimate the probability of an item being a user's best choice, and produces a personalized ranking accordingly. We evaluate the accuracy of MAPS through extensive simulations. The results show that MAPS significantly outperforms existing multi-attribute ranking algorithms.","PeriodicalId":354101,"journal":{"name":"6th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.COLLABORATECOM.2010.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents MAPS — a personalized Multi-Attribute Probabilistic Selection framework — to estimate the probability of an item being a user's best choice and rank the items accordingly. The MAPS framework makes three original contributions in this paper. First, we capture the inter-attribute tradeoff by a visual angle model which maps multi-attribute items into points (stars) in a multidimensional space (sky). Second, we model the inter-item competition using the dominating areas of the stars. Third, we capture the user's personal preferences by a density function learned from his/her history. The MAPS framework carefully combines all three factors to estimate the probability of an item being a user's best choice, and produces a personalized ranking accordingly. We evaluate the accuracy of MAPS through extensive simulations. The results show that MAPS significantly outperforms existing multi-attribute ranking algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过项目间竞争的多维建模,提升个性化排名质量
本文提出了一种个性化的多属性概率选择框架MAPS来估计一个项目成为用户最佳选择的概率,并据此对项目进行排序。MAPS框架在本文中有三个原创性贡献。首先,我们通过一个视角模型捕获属性间的权衡,该模型将多属性项目映射到多维空间(天空)中的点(星星)。其次,我们利用明星的主导区域对项目间竞争进行建模。第三,我们通过从他/她的历史中学习的密度函数来捕获用户的个人偏好。MAPS框架仔细地结合了这三个因素,以估计某项成为用户最佳选择的可能性,并相应地产生个性化排名。我们通过大量的模拟来评估MAPS的准确性。结果表明,MAPS显著优于现有的多属性排序算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A collaborative framework for privacy protection in online social networks Information flow control in cloud computing Enhancing personalized ranking quality through multidimensional modeling of inter-item competition CAEVA: A customizable and adaptive event aggregation framework for collaborative broker overlays Collaborative information finding in smaller communities: The case of research talks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1