Twitter Opinion Mining Analysis of Web-Based Handphone Brand Using Naïve Bayes Classification Method

bit-Tech Pub Date : 2021-12-30 DOI:10.32877/bt.v4i2.287
S. Wijaya, Yo Ceng Giap
{"title":"Twitter Opinion Mining Analysis of Web-Based Handphone Brand Using Naïve Bayes Classification Method","authors":"S. Wijaya, Yo Ceng Giap","doi":"10.32877/bt.v4i2.287","DOIUrl":null,"url":null,"abstract":"Social Media is now very commonly used for the benefit of society. People mostly use social media to convey information, give opinions, even for media to express themselves. One of the social media that is widely used to convey this information is Twitter. From the use of Twitter, a public opinion tweet emerged about a mobile phone product. The more that is posted on Twitter about cellphones, the more public opinion will arise about cellphone brands. From these opinions, a classification is needed that can distinguish Neutral, Negative, or Positive Opinions. Sentiment analysis or opinion mining is one part of text mining that can help with these problems. In connection with the above, an application is designed that can analyze sentiment analysis from Twitter using the Naïve Bayes classification method. The results of the application of the Naïve Bayes classification method will result in a classification of sentiments into neutral, negative, or positive opinions","PeriodicalId":405015,"journal":{"name":"bit-Tech","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bit-Tech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32877/bt.v4i2.287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social Media is now very commonly used for the benefit of society. People mostly use social media to convey information, give opinions, even for media to express themselves. One of the social media that is widely used to convey this information is Twitter. From the use of Twitter, a public opinion tweet emerged about a mobile phone product. The more that is posted on Twitter about cellphones, the more public opinion will arise about cellphone brands. From these opinions, a classification is needed that can distinguish Neutral, Negative, or Positive Opinions. Sentiment analysis or opinion mining is one part of text mining that can help with these problems. In connection with the above, an application is designed that can analyze sentiment analysis from Twitter using the Naïve Bayes classification method. The results of the application of the Naïve Bayes classification method will result in a classification of sentiments into neutral, negative, or positive opinions
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Naïve贝叶斯分类方法的手机品牌Twitter意见挖掘分析
社交媒体现在被广泛用于造福社会。人们大多使用社交媒体来传达信息,发表意见,甚至作为媒体来表达自己。被广泛用于传达这一信息的社交媒体之一是Twitter。从Twitter的使用中,出现了一条关于手机产品的舆论推文。Twitter上发布的关于手机的信息越多,关于手机品牌的公众舆论就会越多。从这些意见中,需要一个分类,可以区分中立,消极,或积极的意见。情感分析或观点挖掘是文本挖掘的一部分,可以帮助解决这些问题。结合上述,设计了一个应用程序,可以使用Naïve贝叶斯分类方法分析Twitter的情感分析。应用Naïve贝叶斯分类方法的结果将导致情绪分类为中性,消极或积极的意见
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation Search Engine Optimization (SEO) to Improve Marketing F&B Industry Analysis And Design Of Online Based Plastic Sales Information System With User Acceptance Testing Method Design a Web-based Education Development Contribution Payment Application at SDIT Tahfidz Bintangku Clustering Mental Health on Instagram Users Using K-Means Algorithm Implementation of Business Intelligence In Analyzing Data Using Tableau at PT Global Bintan Permata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1