Sensor selection and power allocation via maximizing Bayesian fisher information for distributed vector estimation

Mojtaba Shirazi, Alireza Sani, A. Vosoughi
{"title":"Sensor selection and power allocation via maximizing Bayesian fisher information for distributed vector estimation","authors":"Mojtaba Shirazi, Alireza Sani, A. Vosoughi","doi":"10.1109/ACSSC.2017.8335580","DOIUrl":null,"url":null,"abstract":"In this paper we study the problem of distributed estimation of a Gaussian vector with linear observation model in a wireless sensor network (WSN) consisting of K sensors that transmit their modulated quantized observations over orthogonal erroneous wireless channels (subject to fading and noise) to a fusion center, which estimates the unknown vector. Due to limited network transmit power, only a subset of sensors can be active at each task period. Here, we formulate the problem of sensor selection and transmit power allocation that maximizes the trace of Bayesian Fisher Information Matrix (FIM) under network transmit power constraint, and propose three algorithms to solve it. Simulation results demonstarte the superiority of these algorithms compared to the algorithm that uniformly allocates power among all sensors.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we study the problem of distributed estimation of a Gaussian vector with linear observation model in a wireless sensor network (WSN) consisting of K sensors that transmit their modulated quantized observations over orthogonal erroneous wireless channels (subject to fading and noise) to a fusion center, which estimates the unknown vector. Due to limited network transmit power, only a subset of sensors can be active at each task period. Here, we formulate the problem of sensor selection and transmit power allocation that maximizes the trace of Bayesian Fisher Information Matrix (FIM) under network transmit power constraint, and propose three algorithms to solve it. Simulation results demonstarte the superiority of these algorithms compared to the algorithm that uniformly allocates power among all sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最大贝叶斯fisher信息的分布式矢量估计传感器选择和功率分配
本文研究了一个由K个传感器组成的无线传感器网络(WSN)中具有线性观测模型的高斯向量的分布估计问题,这些传感器通过正交错误无线信道(受衰落和噪声影响)将调制后的量化观测数据传输到一个融合中心,融合中心对未知向量进行估计。由于网络传输功率有限,每个任务周期只有一部分传感器处于活动状态。在此,我们提出了在网络发射功率约束下,使贝叶斯费雪信息矩阵(FIM)轨迹最大化的传感器选择和发射功率分配问题,并提出了三种算法来解决该问题。仿真结果证明了这些算法与在所有传感器之间均匀分配功率的算法相比的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
milliProxy: A TCP proxy architecture for 5G mmWave cellular systems Joint user scheduling and power optimization in full-duplex cells with successive interference cancellation Deep neural network architectures for modulation classification Towards provably invisible network flow fingerprints Seeded graph matching: Efficient algorithms and theoretical guarantees
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1