Mammogram classification using deep learning features

S. J. S. Gardezi, M. Awais, I. Faye, F. Mériaudeau
{"title":"Mammogram classification using deep learning features","authors":"S. J. S. Gardezi, M. Awais, I. Faye, F. Mériaudeau","doi":"10.1109/ICSIPA.2017.8120660","DOIUrl":null,"url":null,"abstract":"This paper presents a method for classification of normal and abnormal tissues in mammograms using a deep learning approach. VGG-16 CNN deep learning architecture with convolutional filter of (3×3) is implemented on mammograms ROIs from the IRMA dataset. The deep feature matrix is computed from first fully connected layer. The results are evaluated using 10 fold cross validation on SVM, binary trees, simple logistics and KNN (with k=1, 3, 5) classifiers. The method produced 100% classification accuracies with AUC 1.0.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

This paper presents a method for classification of normal and abnormal tissues in mammograms using a deep learning approach. VGG-16 CNN deep learning architecture with convolutional filter of (3×3) is implemented on mammograms ROIs from the IRMA dataset. The deep feature matrix is computed from first fully connected layer. The results are evaluated using 10 fold cross validation on SVM, binary trees, simple logistics and KNN (with k=1, 3, 5) classifiers. The method produced 100% classification accuracies with AUC 1.0.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习特征的乳房x线照片分类
本文提出了一种使用深度学习方法对乳房x线照片中的正常和异常组织进行分类的方法。在IRMA数据集的乳房x线照片roi上实现了带有卷积滤波器(3×3)的VGG-16 CNN深度学习架构。深度特征矩阵从第一个全连通层开始计算。使用支持向量机、二叉树、简单物流和KNN (k= 1,3,5)分类器对结果进行10次交叉验证。该方法的分类准确率为100%,AUC为1.0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions A real-time multi-class multi-object tracker using YOLOv2 Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application Hybrid DWT and MFCC feature warping for noisy forensic speaker verification in room reverberation A deep architecture for face recognition based on multiple feature extraction techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1