A real-time multi-class multi-object tracker using YOLOv2

KangUn Jo, Jung-Hui Im, Jingu Kim, Dae-Shik Kim
{"title":"A real-time multi-class multi-object tracker using YOLOv2","authors":"KangUn Jo, Jung-Hui Im, Jingu Kim, Dae-Shik Kim","doi":"10.1109/ICSIPA.2017.8120665","DOIUrl":null,"url":null,"abstract":"Multi-class multi-object tracking is an important problem for real-world applications like surveillance system, gesture recognition, and robot vision system. However, building a multi-class multi-object tracker that works in real-time is difficult due to low processing speed for detection, classification, and data association tasks. By using fast and reliable deep learning based algorithm YOLOv2 together with fast detection to tracker algorithm, we build a real-time multi-class multi-object tracking system with competitive accuracy.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Multi-class multi-object tracking is an important problem for real-world applications like surveillance system, gesture recognition, and robot vision system. However, building a multi-class multi-object tracker that works in real-time is difficult due to low processing speed for detection, classification, and data association tasks. By using fast and reliable deep learning based algorithm YOLOv2 together with fast detection to tracker algorithm, we build a real-time multi-class multi-object tracking system with competitive accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用YOLOv2的实时多类多目标跟踪器
多类多目标跟踪是监控系统、手势识别和机器人视觉系统等实际应用中的一个重要问题。然而,由于检测、分类和数据关联任务的处理速度较慢,构建实时工作的多类多目标跟踪器是很困难的。采用快速可靠的基于深度学习的YOLOv2算法,结合快速检测到跟踪算法,构建了具有一定精度的实时多类多目标跟踪系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions A real-time multi-class multi-object tracker using YOLOv2 Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application Hybrid DWT and MFCC feature warping for noisy forensic speaker verification in room reverberation A deep architecture for face recognition based on multiple feature extraction techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1