{"title":"Emotion-Aware Event Summarization in Microblogs","authors":"R. Panchendrarajan, W. Hsu, M. Lee","doi":"10.1145/3442442.3452311","DOIUrl":null,"url":null,"abstract":"Microblogs have become the preferred means of communication for people to share information and feelings, especially for fast evolving events. Understanding the emotional reactions of people allows decision makers to formulate policies that are likely to be more well-received by the public and hence better accepted especially during policy implementation. However, uncovering the topics and emotions related to an event over time is a challenge due to the short and noisy nature of microblogs. This work proposes a weakly supervised learning approach to learn coherent topics and the corresponding emotional reactions as an event unfolds. We summarize the event by giving the representative microblogs and the emotion distributions associated with the topics over time. Experiments on multiple real-world event datasets demonstrate the effectiveness of the proposed approach over existing solutions.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3452311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Microblogs have become the preferred means of communication for people to share information and feelings, especially for fast evolving events. Understanding the emotional reactions of people allows decision makers to formulate policies that are likely to be more well-received by the public and hence better accepted especially during policy implementation. However, uncovering the topics and emotions related to an event over time is a challenge due to the short and noisy nature of microblogs. This work proposes a weakly supervised learning approach to learn coherent topics and the corresponding emotional reactions as an event unfolds. We summarize the event by giving the representative microblogs and the emotion distributions associated with the topics over time. Experiments on multiple real-world event datasets demonstrate the effectiveness of the proposed approach over existing solutions.