Multi-Level Spatiotemporal Network for Video Summarization

Mingyu Yao, Yu Bai, Wei Du, Xuejun Zhang, Heng Quan, Fuli Cai, Hongwei Kang
{"title":"Multi-Level Spatiotemporal Network for Video Summarization","authors":"Mingyu Yao, Yu Bai, Wei Du, Xuejun Zhang, Heng Quan, Fuli Cai, Hongwei Kang","doi":"10.1145/3503161.3548105","DOIUrl":null,"url":null,"abstract":"With the increasing of ubiquitous devices with cameras, video content is widely produced in the industry. Automation video summarization allows content consumers effectively retrieve the moments that capture their primary attention. Existing supervised methods mainly focus on frame-level information. As a natural phenomenon, video fragments in different shots are richer in semantics than frames. We leverage this as a free latent supervision signal and introduce a novel model named multi-level spatiotemporal network (MLSN). Our approach contains Multi-Level Feature Representations (MLFR) and Local Relative Loss (LRL). MLFR module consists of frame-level features, fragment-level features, and shot-level features with relative position encoding. For videos of different shot durations, it can flexibly capture and accommodate semantic information of different spatiotemporal granularities; LRL utilizes the partial ordering relations among frames of each fragment to capture highly discriminative features to improve the sensitivity of the model. Our method substantially improves the best existing published method by 7% on our industrial products dataset LSVD. Meanwhile, experimental results on two widely used benchmark datasets SumMe and TVSum demonstrate that our method outperforms most state-of-the-art ones.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the increasing of ubiquitous devices with cameras, video content is widely produced in the industry. Automation video summarization allows content consumers effectively retrieve the moments that capture their primary attention. Existing supervised methods mainly focus on frame-level information. As a natural phenomenon, video fragments in different shots are richer in semantics than frames. We leverage this as a free latent supervision signal and introduce a novel model named multi-level spatiotemporal network (MLSN). Our approach contains Multi-Level Feature Representations (MLFR) and Local Relative Loss (LRL). MLFR module consists of frame-level features, fragment-level features, and shot-level features with relative position encoding. For videos of different shot durations, it can flexibly capture and accommodate semantic information of different spatiotemporal granularities; LRL utilizes the partial ordering relations among frames of each fragment to capture highly discriminative features to improve the sensitivity of the model. Our method substantially improves the best existing published method by 7% on our industrial products dataset LSVD. Meanwhile, experimental results on two widely used benchmark datasets SumMe and TVSum demonstrate that our method outperforms most state-of-the-art ones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向视频摘要的多层次时空网络
随着摄像机设备的普及,视频内容在行业中被广泛生产。自动化视频摘要允许内容消费者有效地检索捕获他们主要注意力的时刻。现有的监督方法主要关注帧级信息。作为一种自然现象,不同镜头下的视频片段比帧具有更丰富的语义。我们将其作为一个自由的潜在监督信号,并引入了一种新的模型,称为多层次时空网络(MLSN)。我们的方法包含多层次特征表示(MLFR)和局部相对损失(LRL)。MLFR模块由帧级特征、片段级特征和相对位置编码的镜头级特征组成。对于不同镜头时长的视频,可以灵活捕捉和容纳不同时空粒度的语义信息;LRL利用每个片段帧之间的偏序关系来捕捉高度判别的特征,提高模型的灵敏度。在我们的工业品数据集LSVD上,我们的方法大大提高了现有最佳方法的7%。同时,在两个广泛使用的基准数据集SumMe和TVSum上的实验结果表明,我们的方法优于大多数最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for Personalized Micro-video Recommendation Composite Photograph Harmonization with Complete Background Cues Domain-Specific Conditional Jigsaw Adaptation for Enhancing transferability and Discriminability Enabling Effective Low-Light Perception using Ubiquitous Low-Cost Visible-Light Cameras Restoration of Analog Videos Using Swin-UNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1