Diffusion Transformer for Adaptive Text-to-Speech

Haolin Chen, Philip N. Garner
{"title":"Diffusion Transformer for Adaptive Text-to-Speech","authors":"Haolin Chen, Philip N. Garner","doi":"10.21437/ssw.2023-25","DOIUrl":null,"url":null,"abstract":"Given the success of diffusion in synthesizing realistic speech, we investigate how diffusion can be included in adaptive text-to-speech systems. Inspired by the adaptable layer norm modules for Transformer, we adapt a new backbone of diffusion models, Diffusion Transformer, for acoustic modeling. Specifically, the adaptive layer norm in the architecture is used to condition the diffusion network on text representations, which further enables parameter-efficient adaptation. We show the new architecture to be a faster alternative to its convolutional counterpart for general text-to-speech, while demonstrating a clear advantage on naturalness and similarity over the Transformer for few-shot and few-parameter adaptation. In the zero-shot scenario, while the new backbone is a decent alternative, the main benefit of such an architecture is to enable high-quality parameter-efficient adaptation when finetuning is performed.","PeriodicalId":346639,"journal":{"name":"12th ISCA Speech Synthesis Workshop (SSW2023)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th ISCA Speech Synthesis Workshop (SSW2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ssw.2023-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given the success of diffusion in synthesizing realistic speech, we investigate how diffusion can be included in adaptive text-to-speech systems. Inspired by the adaptable layer norm modules for Transformer, we adapt a new backbone of diffusion models, Diffusion Transformer, for acoustic modeling. Specifically, the adaptive layer norm in the architecture is used to condition the diffusion network on text representations, which further enables parameter-efficient adaptation. We show the new architecture to be a faster alternative to its convolutional counterpart for general text-to-speech, while demonstrating a clear advantage on naturalness and similarity over the Transformer for few-shot and few-parameter adaptation. In the zero-shot scenario, while the new backbone is a decent alternative, the main benefit of such an architecture is to enable high-quality parameter-efficient adaptation when finetuning is performed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应文本到语音的扩散变压器
鉴于扩散在合成真实语音方面的成功,我们研究了如何将扩散纳入自适应文本到语音系统。受Transformer的自适应层范数模块的启发,我们采用了一种新的扩散模型主干——diffusion Transformer来进行声学建模。具体而言,该体系结构中的自适应层规范用于约束文本表示的扩散网络,从而进一步实现参数高效自适应。对于一般的文本到语音的转换,我们展示了新的体系结构是比卷积体系结构更快的替代方案,同时展示了在自然性和相似性方面比Transformer具有更少镜头和更少参数适应的明显优势。在零攻击场景中,虽然新的主干是一个不错的替代方案,但这种架构的主要优点是在执行调优时能够实现高质量的参数高效适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Re-examining the quality dimensions of synthetic speech Synthesising turn-taking cues using natural conversational data Diffusion Transformer for Adaptive Text-to-Speech Adaptive Duration Modification of Speech using Masked Convolutional Networks and Open-Loop Time Warping Audiobook synthesis with long-form neural text-to-speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1