Electro-Mechanical Mode Identification of a BESS Integrated Grid System Through Subspace Identification Method

Fahim Al Hasnain, S. Kamalasadan, Michael Smith
{"title":"Electro-Mechanical Mode Identification of a BESS Integrated Grid System Through Subspace Identification Method","authors":"Fahim Al Hasnain, S. Kamalasadan, Michael Smith","doi":"10.1109/GlobConPT57482.2022.9938329","DOIUrl":null,"url":null,"abstract":"Increasing the penetration of renewable energy sources into an existing power system reduces the system's inertia, which can result in stability issues. Consequently, monitoring the different oscillatory modes resulting from an inverter-based generation's integration to a grid is of great concern. Most renewable energy sources operate based on maximum power point tracking (MPPT), because of economic reasons, since they are strongly dependent on weather conditions, which are intermittent and fluctuate. Battery energy storage systems (BESS) can provide a solution to the stochastic nature of renewable energy sources, because of a BESS's capability to store energy, support bidirectional energy exchange, provide geographical independence, and support fast output response. In this paper, a BESS along with a photovoltaic (PV) system are connected to a power grid via grid following and grid forming control architectures to study the oscillatory modes. A subspace identification method is used to identify oscillatory modes and their damping ratios from the measured voltage dynamics are obtained for the test system.","PeriodicalId":431406,"journal":{"name":"2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobConPT57482.2022.9938329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing the penetration of renewable energy sources into an existing power system reduces the system's inertia, which can result in stability issues. Consequently, monitoring the different oscillatory modes resulting from an inverter-based generation's integration to a grid is of great concern. Most renewable energy sources operate based on maximum power point tracking (MPPT), because of economic reasons, since they are strongly dependent on weather conditions, which are intermittent and fluctuate. Battery energy storage systems (BESS) can provide a solution to the stochastic nature of renewable energy sources, because of a BESS's capability to store energy, support bidirectional energy exchange, provide geographical independence, and support fast output response. In this paper, a BESS along with a photovoltaic (PV) system are connected to a power grid via grid following and grid forming control architectures to study the oscillatory modes. A subspace identification method is used to identify oscillatory modes and their damping ratios from the measured voltage dynamics are obtained for the test system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于子空间辨识法的BESS集成网格系统机电模式辨识
增加可再生能源对现有电力系统的渗透减少了系统的惯性,这可能导致稳定性问题。因此,监测由基于逆变器的发电整合到电网的不同振荡模式是非常值得关注的。由于经济原因,大多数可再生能源基于最大功率点跟踪(MPPT)运行,因为它们强烈依赖于间歇性和波动的天气条件。电池储能系统(BESS)可以为可再生能源的随机性提供解决方案,因为BESS具有存储能量、支持双向能量交换、提供地理独立性和支持快速输出响应的能力。本文将BESS与光伏(PV)系统通过电网跟随和电网形成控制体系连接到电网,研究其振荡模式。采用子空间识别方法对系统的振动模式进行识别,并根据实测电压动态得到系统的振型阻尼比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MeDiFakeD: Medical Deepfake Detection using Convolutional Reservoir Networks Artificial Neural Networks as a Methodology for Optimal Location of Static Synchronous Series Compensator in Transmission Systems Electromagnetic Characterization of Multi-winding High Frequency Magnetic Link Under Non-sinusoidal Excitations Implementation of Various Modulation Techniques to a PV Fed Solar Inverter with High Gain DC-DC Converter in Standalone Applications Obstacle Free Robot Motion Planning and Intelligent Maneuvering Controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1