Thermal insulation of walls by using multiple air gaps separated by aluminum sheets

S. Hashim, H. Abdullah
{"title":"Thermal insulation of walls by using multiple air gaps separated by aluminum sheets","authors":"S. Hashim, H. Abdullah","doi":"10.31185/ejuow.vol10.iss2.264","DOIUrl":null,"url":null,"abstract":"Thermal insulation in the building walls is an important factor to reduce heat transfer from the external environment, thus reducing the demand for air conditioning and achieving thermal comfort. In order to improve the thermal performance of building walls, the present work aims to construct hollow (double) walls experimentally; which are made of several air layers separated by thin aluminum sheets, and to find the extent of their impact on improving or reducing heat gain. Tests were conducted on a model room of sandwich panel with dimensions of 2 m length and 2 m width, and 2.4 m height (32.5 latitudes) in kut city, Iraq, in August. A hole was drilled in the southwest wall with the following dimensions: (1 m long, 0.3 m wide). Three models of hollow walls with a 6 cm air gap were built in this hole; one was left with a 6 cm air gap (without dividing), the second was divided into two parts by placing a thin sheet of aluminum 1 mm thick, and the third wall's air gap was divided into three parts by placing two thin sheets of aluminum. The experimental results showed that the quantity of heat gain was lowered when the air layers were increased. The heat gain decrease was 11.5 % and 21 %, respectively, when comparing the wall with a cavity of 6 cm (without splitting) with the two walls in which the air gap was divided into two and three layers.","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/ejuow.vol10.iss2.264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal insulation in the building walls is an important factor to reduce heat transfer from the external environment, thus reducing the demand for air conditioning and achieving thermal comfort. In order to improve the thermal performance of building walls, the present work aims to construct hollow (double) walls experimentally; which are made of several air layers separated by thin aluminum sheets, and to find the extent of their impact on improving or reducing heat gain. Tests were conducted on a model room of sandwich panel with dimensions of 2 m length and 2 m width, and 2.4 m height (32.5 latitudes) in kut city, Iraq, in August. A hole was drilled in the southwest wall with the following dimensions: (1 m long, 0.3 m wide). Three models of hollow walls with a 6 cm air gap were built in this hole; one was left with a 6 cm air gap (without dividing), the second was divided into two parts by placing a thin sheet of aluminum 1 mm thick, and the third wall's air gap was divided into three parts by placing two thin sheets of aluminum. The experimental results showed that the quantity of heat gain was lowered when the air layers were increased. The heat gain decrease was 11.5 % and 21 %, respectively, when comparing the wall with a cavity of 6 cm (without splitting) with the two walls in which the air gap was divided into two and three layers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用铝板隔开多个气隙进行墙体隔热
建筑墙体的保温是减少外界环境热量传递的重要因素,从而减少对空调的需求,实现热舒适。为了提高建筑墙体的热工性能,本工作旨在进行空心(双层)墙体的实验建造;它们是由薄铝板隔开的几个空气层组成的,并找出它们对改善或减少热增益的影响程度。8月,在伊拉克库特市对长2米、宽2米、高2.4米(32.5纬度)的夹层板样板间进行了试验。在西南墙上钻了一个孔,尺寸如下:(长1米,宽0.3米)。在这个洞里建造了三个空心墙模型,每个空心墙之间有6厘米的气隙;其中一面墙留下了6厘米的气隙(没有分隔),第二面墙通过放置1毫米厚的薄铝片将其分成两部分,第三面墙的气隙通过放置两片薄铝片将其分成三部分。实验结果表明,随着空气层数的增加,热增益减小。当将6 cm空腔壁(不劈裂)与将气隙分成两层和三层的两面墙进行比较时,热增益分别减少11.5%和21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Dye Removal and Water Treatment Feasibility Assessment for Iraq's Industrial Sector: A Case Study on Terasil Blue Dye Treatment Using Inverse Fluidized Bed and Adsorption A Deep Learning Approach to Evaluating SISO-OFDM Channel Equalization Numerical Investigation of the Impact of Subcooling Inlet on Water Flow Boiling Heat Transfer Through a Microchannel Effect of Metal Foam’s Volume on the Performance of a Double Pipe heat exchanger Flow field and heat transfer characteristics in dimple pipe with different shape of dimples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1