Using Multiple Resources in Graph-Based Semi-supervised Sentiment Classification

Ge Xu, Houfeng Wang
{"title":"Using Multiple Resources in Graph-Based Semi-supervised Sentiment Classification","authors":"Ge Xu, Houfeng Wang","doi":"10.1109/WI-IAT.2012.18","DOIUrl":null,"url":null,"abstract":"For sentiment classification, there exist a heterogeneous mass of resources such as semantic dictionaries, unlabeled corpora, and heuristic rules. In this paper, based on a graph-based semi-supervised algorithm, we focus on exploiting multiple resources to construct similarity matrices which are fused by simple but effective schemes. We reported encouraging results of the experiments in sentiment classification, which indicate that the adopted algorithm can utilize multiple resources to improve performance.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For sentiment classification, there exist a heterogeneous mass of resources such as semantic dictionaries, unlabeled corpora, and heuristic rules. In this paper, based on a graph-based semi-supervised algorithm, we focus on exploiting multiple resources to construct similarity matrices which are fused by simple but effective schemes. We reported encouraging results of the experiments in sentiment classification, which indicate that the adopted algorithm can utilize multiple resources to improve performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图的多资源半监督情感分类
对于情感分类,存在大量异构资源,如语义词典、未标记语料库和启发式规则。本文在基于图的半监督算法的基础上,重点研究了利用多资源构造相似矩阵,并用简单而有效的方案进行融合。我们报告了令人鼓舞的情感分类实验结果,这表明所采用的算法可以利用多种资源来提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conceptualization Effects on MEDLINE Documents Classification Using Rocchio Method Keyword Proximity Search over Large and Complex RDF Database Cognitive-Educational Constraints for Socially-Relevant MALL Technologies Mining Criminal Networks from Chat Log Inferring User Context from Spatio-Temporal Pattern Mining for Mobile Application Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1