CHaPR: Efficient Inference of CNNs via Channel Pruning

Boyu Zhang, A. Davoodi, Y. Hu
{"title":"CHaPR: Efficient Inference of CNNs via Channel Pruning","authors":"Boyu Zhang, A. Davoodi, Y. Hu","doi":"10.1109/COINS49042.2020.9191636","DOIUrl":null,"url":null,"abstract":"To deploy a CNN on resource-constrained edge platforms, channel pruning techniques promise a significant reduction of implementation costs including memory, computation, and energy consumption without special hardware or software libraries. This paper proposes CHaPR, a novel pruning technique to structurally prune the redundant channels in a trained deep Convolutional Neural Network. CHaPR utilizes a proposed subset selection problem formulation for pruning which it solves using pivoted QR factorization. CHaPR also includes an additional pruning technique for ResNet-like architectures which resolves the issue encountered by some existing channel pruning methods that not all the layers can be pruned. Experimental results on VGG-16 and ResNet-50 models show 4.29X and 2.84X reduction, respectively in computation cost while incurring 2.50% top-1 and 1.40% top-5 accuracy losses. Compared to many existing works, CHaPR performs better when considering an Overall Score metric which accounts for both computation and accuracy.","PeriodicalId":350108,"journal":{"name":"2020 International Conference on Omni-layer Intelligent Systems (COINS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Omni-layer Intelligent Systems (COINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COINS49042.2020.9191636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

To deploy a CNN on resource-constrained edge platforms, channel pruning techniques promise a significant reduction of implementation costs including memory, computation, and energy consumption without special hardware or software libraries. This paper proposes CHaPR, a novel pruning technique to structurally prune the redundant channels in a trained deep Convolutional Neural Network. CHaPR utilizes a proposed subset selection problem formulation for pruning which it solves using pivoted QR factorization. CHaPR also includes an additional pruning technique for ResNet-like architectures which resolves the issue encountered by some existing channel pruning methods that not all the layers can be pruned. Experimental results on VGG-16 and ResNet-50 models show 4.29X and 2.84X reduction, respectively in computation cost while incurring 2.50% top-1 and 1.40% top-5 accuracy losses. Compared to many existing works, CHaPR performs better when considering an Overall Score metric which accounts for both computation and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
第三章:基于信道剪枝的cnn高效推理
为了在资源受限的边缘平台上部署CNN,通道修剪技术有望显著降低实现成本,包括内存、计算和能耗,而无需特殊的硬件或软件库。提出了一种新颖的CHaPR剪枝技术,对训练好的深度卷积神经网络中的冗余通道进行结构化剪枝。CHaPR利用提出的子集选择问题公式进行剪枝,它使用pivot QR分解来解决。CHaPR还为类似resnet的体系结构提供了一种额外的修剪技术,它解决了一些现有的通道修剪方法遇到的问题,即不是所有的层都可以修剪。在VGG-16和ResNet-50模型上的实验结果显示,计算成本分别降低了4.29X和2.84X,但top-1和top-5的精度损失分别为2.50%和1.40%。与许多现有作品相比,CHaPR在考虑计算和准确性的综合得分指标时表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embedded vision system for monitoring arc welding with thermal imaging and deep learning Human Activity Recognition: From Sensors to Applications Cold Start in Serverless Computing: Current Trends and Mitigation Strategies COINS 2020 TOC Deployment of Application Microservices in Multi-Domain Federated Fog Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1