{"title":"CHaPR: Efficient Inference of CNNs via Channel Pruning","authors":"Boyu Zhang, A. Davoodi, Y. Hu","doi":"10.1109/COINS49042.2020.9191636","DOIUrl":null,"url":null,"abstract":"To deploy a CNN on resource-constrained edge platforms, channel pruning techniques promise a significant reduction of implementation costs including memory, computation, and energy consumption without special hardware or software libraries. This paper proposes CHaPR, a novel pruning technique to structurally prune the redundant channels in a trained deep Convolutional Neural Network. CHaPR utilizes a proposed subset selection problem formulation for pruning which it solves using pivoted QR factorization. CHaPR also includes an additional pruning technique for ResNet-like architectures which resolves the issue encountered by some existing channel pruning methods that not all the layers can be pruned. Experimental results on VGG-16 and ResNet-50 models show 4.29X and 2.84X reduction, respectively in computation cost while incurring 2.50% top-1 and 1.40% top-5 accuracy losses. Compared to many existing works, CHaPR performs better when considering an Overall Score metric which accounts for both computation and accuracy.","PeriodicalId":350108,"journal":{"name":"2020 International Conference on Omni-layer Intelligent Systems (COINS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Omni-layer Intelligent Systems (COINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COINS49042.2020.9191636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
To deploy a CNN on resource-constrained edge platforms, channel pruning techniques promise a significant reduction of implementation costs including memory, computation, and energy consumption without special hardware or software libraries. This paper proposes CHaPR, a novel pruning technique to structurally prune the redundant channels in a trained deep Convolutional Neural Network. CHaPR utilizes a proposed subset selection problem formulation for pruning which it solves using pivoted QR factorization. CHaPR also includes an additional pruning technique for ResNet-like architectures which resolves the issue encountered by some existing channel pruning methods that not all the layers can be pruned. Experimental results on VGG-16 and ResNet-50 models show 4.29X and 2.84X reduction, respectively in computation cost while incurring 2.50% top-1 and 1.40% top-5 accuracy losses. Compared to many existing works, CHaPR performs better when considering an Overall Score metric which accounts for both computation and accuracy.