Analysis on the gas flow characteristic of high voltage SF6 circuit breaker with novel energy separated nozzle

Xiaoming Liu, Liying Li, Yundong Cao, X. Leng, Yunxue Zhao
{"title":"Analysis on the gas flow characteristic of high voltage SF6 circuit breaker with novel energy separated nozzle","authors":"Xiaoming Liu, Liying Li, Yundong Cao, X. Leng, Yunxue Zhao","doi":"10.1109/ICEPE-ST.2011.6123039","DOIUrl":null,"url":null,"abstract":"In this paper, the high voltage SF6 circuit breaker (HV SF6CB) was taken as the research object, an axial vortex arc quenching chamber structure with a novel “X-type” guide blade on the nozzle upstream is presented to effectively control the kinetic energy of the free vortex formed by the gas flow and to exchange the energy in the radial direction. During the interruption, the temperature gradient along the radial direction can be generated. In the process of the internal energy exchange, because the outer spin flow of the turbulence gains more kinetic energy than the internal energy loss, which makes the total temperature of the outer rotary flow increase, and the internal gas flow temperature decrease accordingly. In this paper, the novel nozzle is proposed and applied to achieve energy separated vortex movement of the high pressure gas flow to reduce the axial temperature and increase the gas flow capability. And a 550kV SF6 CB was taken as the research object in this paper. By using finite volume method (FVM), the 3D flow field mathematical model under the small capacitive current interruption is proposed and the influence of the X type guide blade structure on flow field is simulated. By solving the gas flow field with complex flow path, supersonic nozzle, viscous, compressible and variable boundaries, the influences of different axial vortex nozzle structure on the velocity and pressure distributions have been achieved. In addition, the comparisons of gas flow distributions in the chamber with and without X type guide blade nozzle were obtained and analyzed.","PeriodicalId":379448,"journal":{"name":"2011 1st International Conference on Electric Power Equipment - Switching Technology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 1st International Conference on Electric Power Equipment - Switching Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPE-ST.2011.6123039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the high voltage SF6 circuit breaker (HV SF6CB) was taken as the research object, an axial vortex arc quenching chamber structure with a novel “X-type” guide blade on the nozzle upstream is presented to effectively control the kinetic energy of the free vortex formed by the gas flow and to exchange the energy in the radial direction. During the interruption, the temperature gradient along the radial direction can be generated. In the process of the internal energy exchange, because the outer spin flow of the turbulence gains more kinetic energy than the internal energy loss, which makes the total temperature of the outer rotary flow increase, and the internal gas flow temperature decrease accordingly. In this paper, the novel nozzle is proposed and applied to achieve energy separated vortex movement of the high pressure gas flow to reduce the axial temperature and increase the gas flow capability. And a 550kV SF6 CB was taken as the research object in this paper. By using finite volume method (FVM), the 3D flow field mathematical model under the small capacitive current interruption is proposed and the influence of the X type guide blade structure on flow field is simulated. By solving the gas flow field with complex flow path, supersonic nozzle, viscous, compressible and variable boundaries, the influences of different axial vortex nozzle structure on the velocity and pressure distributions have been achieved. In addition, the comparisons of gas flow distributions in the chamber with and without X type guide blade nozzle were obtained and analyzed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型能量分离喷嘴高压SF6断路器气体流动特性分析
本文以高压SF6断路器(HV SF6CB)为研究对象,提出了一种轴向涡旋灭弧室结构,该结构在喷嘴上游采用新型的“x”型导叶,可以有效控制气体流动形成的自由涡的动能,并在径向上进行能量交换。在中断过程中,可以产生沿径向的温度梯度。在内部能量交换过程中,由于湍流外部自旋流获得的动能大于内部能量损失,使得外部自旋流总温度升高,内部气流温度相应降低。本文提出了一种新型喷嘴,用于实现高压气流的能量分离涡运动,以降低轴向温度,提高气体流动能力。本文以550kV SF6断路器为研究对象。采用有限体积法(FVM)建立了小电容电流中断下的三维流场数学模型,并模拟了X型导叶结构对流场的影响。通过求解具有复杂流道、超声速喷管、粘性、可压缩和可变边界的气体流场,得到了不同轴向涡喷管结构对速度和压力分布的影响。此外,对有导叶喷管和无导叶喷管的腔室内气流分布进行了对比分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HVDC system for a data center equipped with SiC power devices Studies of high current arcs using an optical fiber array based imaging system Experimental investigation on the gas flow motion of puffer circuit breaker Feasibility study of metalized membrane method applied to monitoring corona loss of AC/ DC transmission line Interrupter pressure measurement of a 252 kV SF6 circuit breaker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1