Deep motion transfer without big data

Byungjun Kwon, Moonwon Yu, Hanyoung Jang, KyuHyun Cho, Hyundong Lee, T. Hahn
{"title":"Deep motion transfer without big data","authors":"Byungjun Kwon, Moonwon Yu, Hanyoung Jang, KyuHyun Cho, Hyundong Lee, T. Hahn","doi":"10.1145/3230744.3230751","DOIUrl":null,"url":null,"abstract":"This paper presents a novel motion transfer algorithm that copies content motion into a specific style character. The input consists of two motions. One is a content motion such as walking or running, and the other is movement style such as zombie or Krall. The algorithm automatically generates the synthesized motion such as walking zombie, walking Krall, running zombie, or running Krall. In order to obtain natural results, the method adopts the generative power of deep neural networks. Compared to previous neural approaches, the proposed algorithm shows better quality, runs extremely fast, does not require big data, and supports user-controllable style weights.","PeriodicalId":226759,"journal":{"name":"ACM SIGGRAPH 2018 Posters","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2018 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3230744.3230751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel motion transfer algorithm that copies content motion into a specific style character. The input consists of two motions. One is a content motion such as walking or running, and the other is movement style such as zombie or Krall. The algorithm automatically generates the synthesized motion such as walking zombie, walking Krall, running zombie, or running Krall. In order to obtain natural results, the method adopts the generative power of deep neural networks. Compared to previous neural approaches, the proposed algorithm shows better quality, runs extremely fast, does not require big data, and supports user-controllable style weights.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无大数据的深度运动传输
本文提出了一种新的运动传输算法,将内容运动复制到特定的样式字符中。输入由两个运动组成。一种是内容运动,如行走或跑步,另一种是运动风格,如僵尸或Krall。算法自动生成行走僵尸、行走Krall、奔跑僵尸、奔跑Krall等合成动作。为了获得自然的结果,该方法利用了深度神经网络的生成能力。与以往的神经网络方法相比,该算法质量更好,运行速度极快,不需要大数据,支持用户可控风格权值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Progressive-CRF-net: single image radiometric calibration using stacked CNNs Painting with DEGAS: (digitally extrapolated graphics via algorithmic strokes) Improving regularity of the centoridal voronoi tessellation Which BSSRDF model is better for heterogeneous materials? The stereoscopic art installation eccentric spaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1