{"title":"Avocado","authors":"Jacob M. Schreiber, Timothy J. Durham, W. Noble, J. Bilmes","doi":"10.1145/3388440.3414215","DOIUrl":null,"url":null,"abstract":"In the past decade, the use of high-throughput sequencing assays has allowed researchers to experimentally acquire thousands of functional measurements for each basepair in the human genome. Despite their value, these measurements are only a small fraction of the potential experiments that could be performed while also being too numerous to easily visualize or compute on. In a recent pair of publications [1,2], we address both of these challenges with a deep neural network tensor factorization method, Avocado, that compresses these measurements into dense, information-rich representations. We demonstrate that these learned representations can be used to impute, with high accuracy, the output of tens of thousands of functional experiments that have not yet been performed. Further, we show that, on a variety of genomics tasks, machine learning models that leverage these learned representations outperform those trained directly on the functional measurements. The code is publicly available at https://github.com/jmschrei/avocado.","PeriodicalId":411338,"journal":{"name":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"75 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3414215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the past decade, the use of high-throughput sequencing assays has allowed researchers to experimentally acquire thousands of functional measurements for each basepair in the human genome. Despite their value, these measurements are only a small fraction of the potential experiments that could be performed while also being too numerous to easily visualize or compute on. In a recent pair of publications [1,2], we address both of these challenges with a deep neural network tensor factorization method, Avocado, that compresses these measurements into dense, information-rich representations. We demonstrate that these learned representations can be used to impute, with high accuracy, the output of tens of thousands of functional experiments that have not yet been performed. Further, we show that, on a variety of genomics tasks, machine learning models that leverage these learned representations outperform those trained directly on the functional measurements. The code is publicly available at https://github.com/jmschrei/avocado.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鳄梨
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RA2Vec CanMod From Interatomic Distances to Protein Tertiary Structures with a Deep Convolutional Neural Network Prediction of Large for Gestational Age Infants in Overweight and Obese Women at Approximately 20 Gestational Weeks Using Patient Information for the Prediction of Caregiver Burden in Amyotrophic Lateral Sclerosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1