Geographic Network Automata for Representing Complex Evolving Spatial Systems

T. Anderson, S. Dragićević
{"title":"Geographic Network Automata for Representing Complex Evolving Spatial Systems","authors":"T. Anderson, S. Dragićević","doi":"10.1145/3284038.3284040","DOIUrl":null,"url":null,"abstract":"Almost all spatial systems can be modelled as networks. Typically, networks representations of real systems are static, useful for generating descriptive network measures. However, recent interest lies in the representation and analysis of evolving spatial networks that can facilitate the examination of the close coupling between network structure and network dynamics. Therefore, this study proposes a novel spatial modelling framework, Geographic Network Automata (GNA), to represent evolving spatial networks as a function of iteratively applied transition rules. The framework is demonstrated using an adapted and spatially explicit version of Conway's Game of Life. The simulated spatial network structures are quantified using network measures. The presented GNA model framework is general and flexible so that different types of geospatial phenomena can be modelled, providing valuable insights into the link between network structure, dynamics, and evolution.","PeriodicalId":231488,"journal":{"name":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on GeoSpatial Simulation","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on GeoSpatial Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3284038.3284040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Almost all spatial systems can be modelled as networks. Typically, networks representations of real systems are static, useful for generating descriptive network measures. However, recent interest lies in the representation and analysis of evolving spatial networks that can facilitate the examination of the close coupling between network structure and network dynamics. Therefore, this study proposes a novel spatial modelling framework, Geographic Network Automata (GNA), to represent evolving spatial networks as a function of iteratively applied transition rules. The framework is demonstrated using an adapted and spatially explicit version of Conway's Game of Life. The simulated spatial network structures are quantified using network measures. The presented GNA model framework is general and flexible so that different types of geospatial phenomena can be modelled, providing valuable insights into the link between network structure, dynamics, and evolution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表示复杂演化空间系统的地理网络自动机
几乎所有的空间系统都可以建模为网络。通常,真实系统的网络表示是静态的,对于生成描述性网络度量很有用。然而,最近的兴趣在于对不断演变的空间网络的表示和分析,这有助于检查网络结构和网络动力学之间的密切耦合。因此,本研究提出了一个新的空间建模框架——地理网络自动机(GNA),将不断变化的空间网络表示为迭代应用过渡规则的函数。该框架是使用康威的生活游戏的一个改编和空间明确的版本来演示的。利用网络测度对模拟的空间网络结构进行了量化。所提出的GNA模型框架具有通用性和灵活性,因此可以对不同类型的地理空间现象进行建模,为网络结构、动态和演化之间的联系提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geographic Network Automata for Representing Complex Evolving Spatial Systems Proceedings of the 1st ACM SIGSPATIAL International Workshop on GeoSpatial Simulation Using an Agent-based Model to Explore Alternative Modes of Last-Mile Parcel Delivery in Urban Contexts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1