Xinglong Wu, F. Grassi, S. Pignari, P. Manfredi, D. Vande Ginste
{"title":"Circuit interpretation and perturbative analysis of differential-to-common mode conversion due to bend discontinuities","authors":"Xinglong Wu, F. Grassi, S. Pignari, P. Manfredi, D. Vande Ginste","doi":"10.1109/EDAPS.2017.8276966","DOIUrl":null,"url":null,"abstract":"In this work, the mechanism of differential-to-common-mode (CM) conversion arising in differential interconnects due to bend discontinuities is investigated. A circuit interpretation of the phenomenon is provided in terms of lumped sources of interference included into the equivalent CM circuit. The obtained circuit model, assessed through full-wave simulation, allows inferring analogies and differences with respect to other sources of CM generation such as asymmetries and non-uniformities of the line cross-section, possibly occurring due to the manufacturing process. It is shown that the bent section can be interpreted as a local perturbation of an ideally uniform and symmetric microstrip cross-section and, as such, included into a more general simulation framework based on a perturbative approach aimed at the CM prediction in differential interconnects.","PeriodicalId":329279,"journal":{"name":"2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS.2017.8276966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this work, the mechanism of differential-to-common-mode (CM) conversion arising in differential interconnects due to bend discontinuities is investigated. A circuit interpretation of the phenomenon is provided in terms of lumped sources of interference included into the equivalent CM circuit. The obtained circuit model, assessed through full-wave simulation, allows inferring analogies and differences with respect to other sources of CM generation such as asymmetries and non-uniformities of the line cross-section, possibly occurring due to the manufacturing process. It is shown that the bent section can be interpreted as a local perturbation of an ideally uniform and symmetric microstrip cross-section and, as such, included into a more general simulation framework based on a perturbative approach aimed at the CM prediction in differential interconnects.