Optimal task clustering using Hopfield net

Weiping Zhu, Tyng-Yeu Liang, C. Shieh
{"title":"Optimal task clustering using Hopfield net","authors":"Weiping Zhu, Tyng-Yeu Liang, C. Shieh","doi":"10.1109/ICAPP.1997.651513","DOIUrl":null,"url":null,"abstract":"To achieve high performance in a distributed system, the tasks of a program have to be carefully clustered and assigned to processors. In this paper we present a static method to cluster tasks and allocate them to processors. The proposed method relies on the Hopfield neural network to achieve optimum or near-optimum task clustering in terms of load balancing and communication cost. Experimental studies show that this method indeed can find optimal or near-optimal mapping for those programs used in our tests.","PeriodicalId":325978,"journal":{"name":"Proceedings of 3rd International Conference on Algorithms and Architectures for Parallel Processing","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd International Conference on Algorithms and Architectures for Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPP.1997.651513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve high performance in a distributed system, the tasks of a program have to be carefully clustered and assigned to processors. In this paper we present a static method to cluster tasks and allocate them to processors. The proposed method relies on the Hopfield neural network to achieve optimum or near-optimum task clustering in terms of load balancing and communication cost. Experimental studies show that this method indeed can find optimal or near-optimal mapping for those programs used in our tests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Hopfield网络的最优任务聚类
为了在分布式系统中实现高性能,程序的任务必须小心地集群并分配给处理器。在本文中,我们提出了一种静态方法来集群任务并将它们分配给处理器。该方法利用Hopfield神经网络在负载均衡和通信开销方面实现最优或接近最优的任务聚类。实验研究表明,该方法确实可以为我们测试中使用的程序找到最优或接近最优的映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An FPGA-based on-line neural system in photon counting intensified imagers for space applications A parallel sort-balance mutual range-join algorithm on hypercube computers Real-time obstacle detection on a massively parallel linear architecture Eigenvectors-based parallelisation of nested loops with affine dependences Parallel algorithms for spatial data partition and join processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1