A Novel Feature Extraction for American Sign Language Recognition Using Webcam

Ariya Thongtawee, Onamon Pinsanoh, Y. Kitjaidure
{"title":"A Novel Feature Extraction for American Sign Language Recognition Using Webcam","authors":"Ariya Thongtawee, Onamon Pinsanoh, Y. Kitjaidure","doi":"10.1109/BMEICON.2018.8609933","DOIUrl":null,"url":null,"abstract":"Sign language is physical communication for contributing the meaning instead of using voice to demonstrate communicator’s opinion. This paper introduces a simple and efficient algorithm for feature extraction to recognize American Sign Language alphabets from both static and dynamic gestures. The proposed algorithm comprises of four different techniques: Number of white pixels at the edge of the image (NwE), Finger length from the centroid point (Fcen), Angles between fingers (AngF) and Differences of angles between fingers of the first and last frame (delAng). After extracting features from video images, an Artificial Neural Network (ANN) is used to classify the signs. The result of these experiments is achieved up to 95% recognition rate, which is clearly to be the highest accuracy comparing with the other research worked in this field.","PeriodicalId":232271,"journal":{"name":"2018 11th Biomedical Engineering International Conference (BMEiCON)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEICON.2018.8609933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Sign language is physical communication for contributing the meaning instead of using voice to demonstrate communicator’s opinion. This paper introduces a simple and efficient algorithm for feature extraction to recognize American Sign Language alphabets from both static and dynamic gestures. The proposed algorithm comprises of four different techniques: Number of white pixels at the edge of the image (NwE), Finger length from the centroid point (Fcen), Angles between fingers (AngF) and Differences of angles between fingers of the first and last frame (delAng). After extracting features from video images, an Artificial Neural Network (ANN) is used to classify the signs. The result of these experiments is achieved up to 95% recognition rate, which is clearly to be the highest accuracy comparing with the other research worked in this field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于网络摄像头的美国手语特征提取方法
手语是一种身体交流,它不是用声音来表达交流者的意见,而是用来表达意义的。本文介绍了一种简单有效的特征提取算法,用于从静态和动态手势中识别美国手语字母。该算法包括四种不同的技术:图像边缘的白色像素数(NwE)、距离质心点的手指长度(fen)、手指夹角(AngF)和第一帧和最后一帧手指夹角差(delAng)。从视频图像中提取特征后,使用人工神经网络(ANN)对符号进行分类。这些实验的结果达到了95%的识别率,与该领域的其他研究相比,这显然是最高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Blood Hemolysis Study in Rotary Blood Pump between Continuous Flow and Pulsatile Flow Evaluation of Hemolysis Caused by a Miniature Heart Catheter Pump Pattern Recognition and Mixed Reality for Computer-Aided Maxillofacial Surgery and Oncological Assessment Suitable Supervised Machine Learning Techniques For Malignant Mesothelioma Diagnosis Implementation of Asymmetric Kernel Median Filtering for Real-Time Ultrasound Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1