One-Way Coupled Crystal Plasticity-Hydrogen Diffusion Simulation on Artificial Microstructure

R. Miresmaeili, N. Saintier, H. Notsu, J. Olive, H. Kanayama
{"title":"One-Way Coupled Crystal Plasticity-Hydrogen Diffusion Simulation on Artificial Microstructure","authors":"R. Miresmaeili, N. Saintier, H. Notsu, J. Olive, H. Kanayama","doi":"10.1299/JCST.4.105","DOIUrl":null,"url":null,"abstract":"Many attempts were made in the past to investigate numerically the metal-hydrogen interactions at macro-scale but the actual microstructure was generally not introduced into the analyses. The objective of this work is to simulate, on an artificial polycrystal, the effect of the microstructure-induced stress-strain field heterogeneity on the internal hydrogen evolution. Finite element method is used to take into account explicitly the grain morphologies and their crystalline orientations into the description of the mechanical deformation. A one-way coupled crystal plasticity-transient hydrogen diffusion analysis is developed and applied to solve the boundary value problem. The analysis of the computed hydrogen content field shows that a segregation of hydrogen is observed mainly at the grain boundaries. It is also shown that grain size has a significant effect not only on the amount of hydrogen segregated at the grain boundaries but also on the relative size of concentration gradients.","PeriodicalId":196913,"journal":{"name":"Journal of Computational Science and Technology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JCST.4.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Many attempts were made in the past to investigate numerically the metal-hydrogen interactions at macro-scale but the actual microstructure was generally not introduced into the analyses. The objective of this work is to simulate, on an artificial polycrystal, the effect of the microstructure-induced stress-strain field heterogeneity on the internal hydrogen evolution. Finite element method is used to take into account explicitly the grain morphologies and their crystalline orientations into the description of the mechanical deformation. A one-way coupled crystal plasticity-transient hydrogen diffusion analysis is developed and applied to solve the boundary value problem. The analysis of the computed hydrogen content field shows that a segregation of hydrogen is observed mainly at the grain boundaries. It is also shown that grain size has a significant effect not only on the amount of hydrogen segregated at the grain boundaries but also on the relative size of concentration gradients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单向耦合晶体塑性-人工微观结构氢扩散模拟
在宏观尺度上对金属-氢相互作用进行了大量的数值研究,但通常没有将实际的微观结构引入到分析中。本工作的目的是在人工多晶上模拟微观结构诱导的应力-应变场非均匀性对内部析氢的影响。在描述机械变形时,采用有限元方法明确地考虑了晶粒形态及其结晶取向。提出了晶体塑性-瞬态氢扩散的单向耦合分析方法,并将其应用于边值问题的求解。对计算得到的氢含量场进行分析,发现氢偏析主要发生在晶界处。晶粒尺寸不仅对晶界处的氢偏析量有显著影响,而且对浓度梯度的相对大小也有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Optimization of a Gas Burner for TPV Application Experimental and Numerical Approaches for Reliability Evaluation of Electronic Packaging Two-Layer Viscous Shallow-Water Equations and Conservation Laws Lattice Boltzmann Simulation of Two-Phase Viscoelastic Fluid Flows An Inexact Balancing Preconditioner for Large-Scale Structural Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1