Phenomenology Based Decomposition of Sea Clutter with a Secondary Target Classifier

M. Farshchian, Benjamin Cowen, I. Selesnick
{"title":"Phenomenology Based Decomposition of Sea Clutter with a Secondary Target Classifier","authors":"M. Farshchian, Benjamin Cowen, I. Selesnick","doi":"10.1109/RadarConf2351548.2023.10149773","DOIUrl":null,"url":null,"abstract":"Sea clutter consists of three components: a mean Doppler spectrum, persistent spikes, and discrete spikes, with a random degree of relative power for each component. We propose a non-linear optimization technique designed to decompose noisy sea clutter into these three components plus a noise component using sparsity inducing norms and linear time-invariant (LTI) filtering in various domains. This novel approach is proposed for non-stationary clutter because it avoids any quasistationarity assumptions, unlike the currently proposed state-of-the-art detectors [1]. The decomposition is applied to real South African sea clutter data provided by the Council for Scientific and Industrial Research (CSIR) [2]. We additionally propose a secondary classifier stage for post-processing of potential target detections from the decomposition, and discuss some features that assist in classification between targets and persistent spikes beyond amplitude. Several such extensions are discussed in the conclusion.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sea clutter consists of three components: a mean Doppler spectrum, persistent spikes, and discrete spikes, with a random degree of relative power for each component. We propose a non-linear optimization technique designed to decompose noisy sea clutter into these three components plus a noise component using sparsity inducing norms and linear time-invariant (LTI) filtering in various domains. This novel approach is proposed for non-stationary clutter because it avoids any quasistationarity assumptions, unlike the currently proposed state-of-the-art detectors [1]. The decomposition is applied to real South African sea clutter data provided by the Council for Scientific and Industrial Research (CSIR) [2]. We additionally propose a secondary classifier stage for post-processing of potential target detections from the decomposition, and discuss some features that assist in classification between targets and persistent spikes beyond amplitude. Several such extensions are discussed in the conclusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于现象学的海杂波二次目标分类器分解
海杂波由三个分量组成:平均多普勒频谱、持续尖峰和离散尖峰,每个分量的相对功率都是随机的。我们提出了一种非线性优化技术,旨在通过稀疏性诱导范数和各种域的线性时不变(LTI)滤波,将嘈杂的海杂波分解为这三个分量加上噪声分量。这种新颖的方法是针对非平稳杂波提出的,因为它避免了任何准平稳假设,不像目前提出的最先进的探测器[1]。该分解方法应用于由科学与工业研究理事会(CSIR)提供的真实南非海杂波数据[2]。我们还提出了一个二级分类器阶段,用于从分解中检测潜在目标的后处理,并讨论了一些有助于在目标和超过幅度的持续峰值之间进行分类的特征。在结论部分讨论了几个这样的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Priority-based Task Scheduling in Dynamic Environments for Cognitive MFR via Transfer DRL An Application of Artificial Intelligence to Adaptive Radar Detection Using Raw Data mm-Wave wireless radar network for early detection of Parkinson's Disease by gait analysis Correlation Coefficient vs. Transmit Power for an Experimental Noise Radar Analysis of Keller Cones for RF Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1