Application of Improved BP Neural Network in XAJ with Multiple Water Sources

Bai Juan, Yong Li, Yao Jun
{"title":"Application of Improved BP Neural Network in XAJ with Multiple Water Sources","authors":"Bai Juan, Yong Li, Yao Jun","doi":"10.1145/3234804.3234814","DOIUrl":null,"url":null,"abstract":"This paper tries to apply particle swarm optimization (pso) algorithm to improve the BP-neural network, and the second water source, three water, four water XAJ parameter calibration, the predicted results are compared. The results of different models of river basin water right choice.\n This paper mainly studies the BP neural network based on PSO algorithm of distributed four water xin an river model calculation, this paper did research work includes the following aspects:\n (1) based on the research of the common water level model, select the appropriate parameters, establish proper data model\n (2) based on the research of the common prediction algorithm, BP neural network as the main algorithm to parameter calibration, and apply the PSO algorithm to optimize the BP neural network.","PeriodicalId":118446,"journal":{"name":"International Conference on Deep Learning Technologies","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Deep Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3234804.3234814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper tries to apply particle swarm optimization (pso) algorithm to improve the BP-neural network, and the second water source, three water, four water XAJ parameter calibration, the predicted results are compared. The results of different models of river basin water right choice. This paper mainly studies the BP neural network based on PSO algorithm of distributed four water xin an river model calculation, this paper did research work includes the following aspects: (1) based on the research of the common water level model, select the appropriate parameters, establish proper data model (2) based on the research of the common prediction algorithm, BP neural network as the main algorithm to parameter calibration, and apply the PSO algorithm to optimize the BP neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进BP神经网络在多水源XAJ中的应用
本文尝试应用粒子群优化(pso)算法对bp神经网络进行改进,并对二水源、三水源、四水源的XAJ参数进行标定,对预测结果进行比较。不同模式下的流域水权选择结果。本文主要研究了基于BP神经网络的PSO算法对新安河分布式四水模型的计算,本文所做的研究工作包括以下几个方面:(1)在研究常用水位模型的基础上,选择合适的参数,建立合适的数据模型(2)在研究常用预测算法的基础上,以BP神经网络作为主要算法进行参数标定,并应用粒子群算法对BP神经网络进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TCR: Temporal-CNN for Reviews Based Recommendation System Application of Improved BP Neural Network in XAJ with Multiple Water Sources Design and Implementation of Convolutional Neural Network Accelerator with Variable Layer-by-layer Debugging Multi-Objective Deep CNN for Outdoor Auto-Navigation Improvement of Pruning Method for Convolution Neural Network Compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1