{"title":"Using 3D Spline Differentiation to Compute Quantitative Optical Flow","authors":"J. Barron, M. Daniel, J. Mari","doi":"10.1109/CRV.2006.84","DOIUrl":null,"url":null,"abstract":"We show that differentiation via fitting B-splines to the spatio-temporal intensity data comprising an image sequence provides at least the same and usually better 2D Lucas and Kanade optical flow than that computed via Simoncelli’s balanced/matched filters.","PeriodicalId":369170,"journal":{"name":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2006.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We show that differentiation via fitting B-splines to the spatio-temporal intensity data comprising an image sequence provides at least the same and usually better 2D Lucas and Kanade optical flow than that computed via Simoncelli’s balanced/matched filters.