Knowledge Graph Embeddings and Explainable AI

Federico Bianchi, Gaetano Rossiello, Luca Costabello, M. Palmonari, Pasquale Minervini
{"title":"Knowledge Graph Embeddings and Explainable AI","authors":"Federico Bianchi, Gaetano Rossiello, Luca Costabello, M. Palmonari, Pasquale Minervini","doi":"10.3233/SSW200011","DOIUrl":null,"url":null,"abstract":"Knowledge graph embeddings are now a widely adopted approach to knowledge representation in which entities and relationships are embedded in vector spaces. In this chapter, we introduce the reader to the concept of knowledge graph embeddings by explaining what they are, how they can be generated and how they can be evaluated. We summarize the state-of-the-art in this field by describing the approaches that have been introduced to represent knowledge in the vector space. In relation to knowledge representation, we consider the problem of explainability, and discuss models and methods for explaining predictions obtained via knowledge graph embeddings.","PeriodicalId":331476,"journal":{"name":"Knowledge Graphs for eXplainable Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge Graphs for eXplainable Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SSW200011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

Knowledge graph embeddings are now a widely adopted approach to knowledge representation in which entities and relationships are embedded in vector spaces. In this chapter, we introduce the reader to the concept of knowledge graph embeddings by explaining what they are, how they can be generated and how they can be evaluated. We summarize the state-of-the-art in this field by describing the approaches that have been introduced to represent knowledge in the vector space. In relation to knowledge representation, we consider the problem of explainability, and discuss models and methods for explaining predictions obtained via knowledge graph embeddings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
知识图谱嵌入与可解释人工智能
知识图嵌入是一种广泛采用的知识表示方法,其中实体和关系嵌入到向量空间中。在本章中,我们通过解释知识图嵌入是什么、如何生成以及如何评估来向读者介绍知识图嵌入的概念。我们通过描述在向量空间中表示知识的方法来总结这一领域的最新进展。在知识表示方面,我们考虑了可解释性问题,并讨论了通过知识图嵌入获得的预测的解释模型和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge Graph Embeddings and Explainable AI Foundations of Explainable Knowledge-Enabled Systems Neuro-symbolic Architectures for Context Understanding Differentiable Reasoning on Large Knowledge Bases and Natural Language Explanations in Predictive Analytics: Case Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1