Segmentation of coconut crop bunch from tree images

S. Siddesha, S. Niranjan, V. N. Manjunath Aradhya
{"title":"Segmentation of coconut crop bunch from tree images","authors":"S. Siddesha, S. Niranjan, V. N. Manjunath Aradhya","doi":"10.1109/CCIP.2016.7802865","DOIUrl":null,"url":null,"abstract":"Harvesting is one of the very crucial stages in crop management. Harvesting the crop at proper time will enhance the quality. In this paper we segmented the coconut crop bunch from tree image. Different segmentation methods like, Color based K-Means clustering, Marker controlled watershed, Grow-cut and Maximum Similarity based Region Merging (MSRM) are explored. Experimentation conducted using a dataset of 200 images for demonstration. Out of these methods the MSRM provides good result.","PeriodicalId":354589,"journal":{"name":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIP.2016.7802865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Harvesting is one of the very crucial stages in crop management. Harvesting the crop at proper time will enhance the quality. In this paper we segmented the coconut crop bunch from tree image. Different segmentation methods like, Color based K-Means clustering, Marker controlled watershed, Grow-cut and Maximum Similarity based Region Merging (MSRM) are explored. Experimentation conducted using a dataset of 200 images for demonstration. Out of these methods the MSRM provides good result.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从树木图像中分割椰子作物束
收获是作物管理中非常关键的阶段之一。在适当的时候收割庄稼可以提高质量。本文从树状图像中对椰子作物束进行了分割。探索了基于颜色的K-Means聚类、标记控制分水岭、生长切割和基于最大相似度的区域合并(MSRM)等不同的分割方法。实验使用200张图像的数据集进行演示。在这些方法中,MSRM提供了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hilbert Huang transform based speech recognition An Integrated curvature and Convex Hull based concave point detection in Histopathological images Study of Complex-valued Learning algorithms for Post-surgery survival prediction Optimized Radial Basis Function Neural Network model for wind power prediction Early detection of grapes diseases using machine learning and IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1