Optimal code size reduction for software-pipelined loops on DSP applications

Qingfeng Zhuge, Z. Shao, E. Sha
{"title":"Optimal code size reduction for software-pipelined loops on DSP applications","authors":"Qingfeng Zhuge, Z. Shao, E. Sha","doi":"10.1109/ICPP.2002.1040919","DOIUrl":null,"url":null,"abstract":"Code size expansion of software-pipelined loops is a critical problem for DSP systems with strict code size constraint. Some ad-hoc code size reduction techniques were used to try to reduce the prologue/epilogue produced by software pipelining. We present the fundamental understanding of the relationship between code size expansion and software pipelining. Based on the retiming concept, we present a powerful Code-size REDuction (CRED) technique and its application on various kinds of processors. We also provide CRED algorithms integrated with the software pipelining process. One advantage of our algorithms is that it can explore the trade-off space between \"perfect\" software pipelining and constrained code size. That is, the software pipelining process can be controlled to generate a schedule concerned with code size requirement. The experiment results show the effectiveness of our algorithms in both reducing the code size for software-pipelined loops and exploring the code size/performance trade-off space.","PeriodicalId":393916,"journal":{"name":"Proceedings International Conference on Parallel Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2002.1040919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Code size expansion of software-pipelined loops is a critical problem for DSP systems with strict code size constraint. Some ad-hoc code size reduction techniques were used to try to reduce the prologue/epilogue produced by software pipelining. We present the fundamental understanding of the relationship between code size expansion and software pipelining. Based on the retiming concept, we present a powerful Code-size REDuction (CRED) technique and its application on various kinds of processors. We also provide CRED algorithms integrated with the software pipelining process. One advantage of our algorithms is that it can explore the trade-off space between "perfect" software pipelining and constrained code size. That is, the software pipelining process can be controlled to generate a schedule concerned with code size requirement. The experiment results show the effectiveness of our algorithms in both reducing the code size for software-pipelined loops and exploring the code size/performance trade-off space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DSP应用中软件流水线循环的最佳代码缩减
对于具有严格代码长度约束的DSP系统来说,软件流水线循环的代码长度扩展是一个关键问题。一些特别的代码大小缩减技术被用来尝试减少由软件流水线产生的序言/尾声。我们提出了对代码大小扩展和软件流水线之间关系的基本理解。基于重定时的概念,我们提出了一种强大的代码大小缩减(CRED)技术及其在各种处理器上的应用。我们还提供与软件流水线过程集成的CRED算法。我们的算法的一个优点是,它可以探索“完美的”软件流水线和受约束的代码大小之间的权衡空间。也就是说,可以控制软件流水线过程,以生成与代码大小需求相关的时间表。实验结果表明,我们的算法在减少软件流水线循环的代码大小和探索代码大小/性能权衡空间方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A system for monitoring and management of computational grids Distributed game-tree search using transposition table driven work scheduling Performance comparison of location areas and reporting centers under aggregate movement behavior mobility models Fault-tolerant routing in 2D tori or meshes using limited-global-safety information Partitioning unstructured meshes for homogeneous and heterogeneous parallel computing environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1