Object pose estimation in industrial environments using a synthetic data generation pipeline

Manuel Belke, P. Blanke, S. Storms, W. Herfs
{"title":"Object pose estimation in industrial environments using a synthetic data generation pipeline","authors":"Manuel Belke, P. Blanke, S. Storms, W. Herfs","doi":"10.1109/IRC55401.2022.00084","DOIUrl":null,"url":null,"abstract":"The handling of objects is a crucial robotic skill for the automation of the production industry. The trend to use machine learning to estimate the 6D pose of objects is driven by higher robustness and faster processing times. Machine-learning based 6D pose estimation algorithms are available with varying estimation performance, robustness and flexibility. Suitable algorithms have to be selected based on use-case specific production requirements. A concept to evaluate these algorithms is presented. The generation of synthetic data based on the production requirements is proposed, followed by an evaluation of the algorithms to assess the generalization performance from generic benchmark datasets to custom industrial datasets. The overall pipeline is presented, realized and discussed.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The handling of objects is a crucial robotic skill for the automation of the production industry. The trend to use machine learning to estimate the 6D pose of objects is driven by higher robustness and faster processing times. Machine-learning based 6D pose estimation algorithms are available with varying estimation performance, robustness and flexibility. Suitable algorithms have to be selected based on use-case specific production requirements. A concept to evaluate these algorithms is presented. The generation of synthetic data based on the production requirements is proposed, followed by an evaluation of the algorithms to assess the generalization performance from generic benchmark datasets to custom industrial datasets. The overall pipeline is presented, realized and discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于合成数据生成管道的工业环境中目标姿态估计
搬运物品是生产工业自动化的一项关键机器人技能。使用机器学习来估计物体的6D姿态的趋势是由更高的鲁棒性和更快的处理时间驱动的。基于机器学习的6D姿态估计算法具有不同的估计性能,鲁棒性和灵活性。必须根据特定于用例的生产需求选择合适的算法。提出了一个评价这些算法的概念。提出了基于生产需求的合成数据的生成,然后对算法进行了评估,以评估从通用基准数据集到定制工业数据集的泛化性能。对整个流水线进行了介绍、实现和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Approach to 6D Object Pose Tracking in Fast Motion Scenarios Mechanical Exploration of the Design of Tactile Fingertips via Finite Element Analysis Generating Robot-Dependent Cost Maps for Off-Road Environments Using Locomotion Experiments and Earth Observation Data* Tracking Visual Landmarks of Opportunity as Rally Points for Unmanned Ground Vehicles Experimental Assessment of Feature-based Lidar Odometry and Mapping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1