Multi-node Mobile Charging Scheduling with Deadline Constraints

Xunpeng Rao, Panlong Yang, Haipeng Dai, Hao Zhou, Tao Wu, Xiaoyu Wang
{"title":"Multi-node Mobile Charging Scheduling with Deadline Constraints","authors":"Xunpeng Rao, Panlong Yang, Haipeng Dai, Hao Zhou, Tao Wu, Xiaoyu Wang","doi":"10.1109/MASS.2018.00030","DOIUrl":null,"url":null,"abstract":"In this work, we study the mobile charger scheduling problem for multi-node charging with deadline constraints. In that, we aim at scheduling the charger to maximize the effective charging utility in dealing with the mismatch between time and spatial constraints. The local charging spots selection and globe traveling path should be jointly optimized, which is APX-hard. Nevertheless, our problem becomes much more complex with deadline constraints. To handle aforementioned challenges, we combine the spatial and temporal relevancy into a bipartite graph, and incorporate the multi-charging strategy instead of serving nodes strictly by the non-soft charging demands. We formulate the effective charging utility maximization problem into a monotone submodular function maximization subjected to a partition matroid constraint, and propose a simple but effective 1/2-approximation greedy algorithm. The results show that our scheme outperforms Early Deadline First (EDF) by 37.5%.","PeriodicalId":146214,"journal":{"name":"2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS.2018.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, we study the mobile charger scheduling problem for multi-node charging with deadline constraints. In that, we aim at scheduling the charger to maximize the effective charging utility in dealing with the mismatch between time and spatial constraints. The local charging spots selection and globe traveling path should be jointly optimized, which is APX-hard. Nevertheless, our problem becomes much more complex with deadline constraints. To handle aforementioned challenges, we combine the spatial and temporal relevancy into a bipartite graph, and incorporate the multi-charging strategy instead of serving nodes strictly by the non-soft charging demands. We formulate the effective charging utility maximization problem into a monotone submodular function maximization subjected to a partition matroid constraint, and propose a simple but effective 1/2-approximation greedy algorithm. The results show that our scheme outperforms Early Deadline First (EDF) by 37.5%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时间约束的多节点移动充电调度
本文研究了具有时间约束的多节点充电移动充电器调度问题。其中,在处理时间和空间约束不匹配的情况下,我们的目标是调度充电器以最大化有效充电效用。局部充电点选择和全球行驶路径需要共同优化,这是一个apx难题。然而,由于最后期限的限制,我们的问题变得更加复杂。为了解决上述问题,我们将空间和时间关联关系结合到一个二部图中,并引入多充电策略,而不是严格按照非软充电需求来服务节点。将有效充电效用最大化问题转化为一个受分割矩阵约束的单调子模函数最大化问题,并提出了一种简单而有效的1/2逼近贪心算法。结果表明,该方案比早期截止日期优先(EDF)方案优化37.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning Based Urban Post-Accidental Congestion Prediction BF-IoT: Securing the IoT Networks via Fingerprinting-Based Device Authentication Achieving Energy Efficiency Through Dynamic Computing Offloading in Mobile Edge-Clouds A Fusion Method of Multiple Sensors Data on Panorama Video for Airport Surface Surveillance Theoretical Round Modification Fault Analysis on AEGIS-128 with Algebraic Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1