A gradient based technique for generating sparse representation in function approximation

S. Vijayakumar, Si Wu
{"title":"A gradient based technique for generating sparse representation in function approximation","authors":"S. Vijayakumar, Si Wu","doi":"10.1109/ICONIP.1999.844006","DOIUrl":null,"url":null,"abstract":"We provide an RKHS based inverse problem formulation for analytically deriving the optimal function approximation when probabilistic information about the underlying regression is available in terms of the associated correlation functions as used by Poggio and Girosi (1998) and Peney and Atick (1996). On the lines of Poggio and Girosi, we show that this solution can be sparsified using principles of SVM and provide an implementation of this sparsification using a novel, conceptually simple and robust gradient based sequential method instead of the conventional quadratic programming routines.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.844006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We provide an RKHS based inverse problem formulation for analytically deriving the optimal function approximation when probabilistic information about the underlying regression is available in terms of the associated correlation functions as used by Poggio and Girosi (1998) and Peney and Atick (1996). On the lines of Poggio and Girosi, we show that this solution can be sparsified using principles of SVM and provide an implementation of this sparsification using a novel, conceptually simple and robust gradient based sequential method instead of the conventional quadratic programming routines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于梯度的函数逼近稀疏表示生成技术
我们提供了一个基于RKHS的反问题公式,用于解析地导出最优函数近似值,当有关潜在回归的概率信息可用Poggio和Girosi(1998)以及Peney和Atick(1996)使用的相关函数。在Poggio和Girosi的思路上,我们展示了该解决方案可以使用支持向量机原理进行稀疏化,并使用一种新颖的、概念简单的、鲁棒的基于梯度的顺序方法代替传统的二次规划例程来实现这种稀疏化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market basket analysis of library circulation data Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis Learning and recall of temporal sequences in the network of CA3 pyramidal cells and a basket cell Adaptive sensory integrating neural network based on a Bayesian estimation method Pre-filter design for high speed contouring machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1