Predicting Issue Types with seBERT

Alexander Trautsch, S. Herbold
{"title":"Predicting Issue Types with seBERT","authors":"Alexander Trautsch, S. Herbold","doi":"10.1145/3528588.3528661","DOIUrl":null,"url":null,"abstract":"Pre-trained transformer models are the current state-of-the-art for natural language models processing. seBERT is such a model, that was developed based on the BERT architecture, but trained from scratch with software engineering data. We fine-tuned this model for the NLBSE challenge for the task of issue type prediction. Our model dominates the baseline fastText for all three issue types in both recall and precision to achieve an overall F1-score of 85.7%, which is an increase of 4.1% over the baseline.","PeriodicalId":313397,"journal":{"name":"2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software Engineering (NLBSE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software Engineering (NLBSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3528588.3528661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Pre-trained transformer models are the current state-of-the-art for natural language models processing. seBERT is such a model, that was developed based on the BERT architecture, but trained from scratch with software engineering data. We fine-tuned this model for the NLBSE challenge for the task of issue type prediction. Our model dominates the baseline fastText for all three issue types in both recall and precision to achieve an overall F1-score of 85.7%, which is an increase of 4.1% over the baseline.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用seBERT预测问题类型
预训练的变压器模型是目前自然语言模型处理的最先进技术。seBERT就是这样一个模型,它是基于BERT架构开发的,但是用软件工程数据从头开始训练。我们对这个模型进行了微调,以适应NLBSE挑战的问题类型预测任务。我们的模型在所有三种问题类型的召回率和准确率方面都优于基线fastText,达到了85.7%的f1总分,比基线提高了4.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GitHub Issue Classification Using BERT-Style Models Story Point Level Classification by Text Level Graph Neural Network Issue Report Classification Using Pre-trained Language Models Identification of Intra-Domain Ambiguity using Transformer-based Machine Learning Predicting Issue Types with seBERT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1