Autonomous environmental monitoring by self-powered biohybrid robot

K. Shoji, K. Morishima, Y. Akiyama, N. Nakamura, H. Ohno
{"title":"Autonomous environmental monitoring by self-powered biohybrid robot","authors":"K. Shoji, K. Morishima, Y. Akiyama, N. Nakamura, H. Ohno","doi":"10.1109/ICMA.2016.7558636","DOIUrl":null,"url":null,"abstract":"This paper reports the first demonstration of a self-powered environmental monitoring robot which backpacked a biofuel cell (BFC) and a micro wireless sensor module on insect. Electric power was generated from blood sugar in its hemolymph by using the BFC and temperature and humidity around it was monitored by using the wireless sensor module. Furthermore, the robot moves autonomously by the intention of insect. First, the BFC which can be backpacked cockroaches was fabricated with a 3D printer. The electrochemical reaction of the anode in the insect-mountable BFC (imBFC) was evaluated and an oxidation current of 1.18 mA/cm2 (at +0.6 V vs. Ag|AgCl) was observed. Then, the performance of the imBFC was evaluated and a maximum power output of 333 μW (at 0.5 V) was obtained. Furthermore, a wireless temperature and humidity sensor was successfully driven by the imBFC. Finally, the imBFC and the micro wireless sensor module were mounted on the insect and environmental monitoring was done by the insect. These results indicate that the insect which backpacked the self-powered battery and micro wireless sensors has sufficient potential as microrobots for environmental monitoring and searching in disasters.","PeriodicalId":260197,"journal":{"name":"2016 IEEE International Conference on Mechatronics and Automation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2016.7558636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper reports the first demonstration of a self-powered environmental monitoring robot which backpacked a biofuel cell (BFC) and a micro wireless sensor module on insect. Electric power was generated from blood sugar in its hemolymph by using the BFC and temperature and humidity around it was monitored by using the wireless sensor module. Furthermore, the robot moves autonomously by the intention of insect. First, the BFC which can be backpacked cockroaches was fabricated with a 3D printer. The electrochemical reaction of the anode in the insect-mountable BFC (imBFC) was evaluated and an oxidation current of 1.18 mA/cm2 (at +0.6 V vs. Ag|AgCl) was observed. Then, the performance of the imBFC was evaluated and a maximum power output of 333 μW (at 0.5 V) was obtained. Furthermore, a wireless temperature and humidity sensor was successfully driven by the imBFC. Finally, the imBFC and the micro wireless sensor module were mounted on the insect and environmental monitoring was done by the insect. These results indicate that the insect which backpacked the self-powered battery and micro wireless sensors has sufficient potential as microrobots for environmental monitoring and searching in disasters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自供电生物混合机器人的自主环境监测
本文报道了一种携带生物燃料电池和昆虫微型无线传感器模块的自供电环境监测机器人的首次演示。利用BFC从其血淋巴中的血糖产生电能,并利用无线传感器模块监测其周围的温度和湿度。此外,机器人还能根据昆虫的意图自主移动。首先,用3D打印机制造了可以装蟑螂的BFC。对昆虫可装BFC (imBFC)阳极的电化学反应进行了评价,观察到氧化电流为1.18 mA/cm2 (+0.6 V vs. Ag|AgCl)。在0.5 V电压下,imBFC的最大功率可达333 μW。在此基础上,成功实现了无线温湿度传感器的驱动。最后,将imBFC和微型无线传感器模块安装在昆虫身上,由昆虫进行环境监测。这些结果表明,携带自供电电池和微型无线传感器的昆虫具有足够的潜力作为微型机器人进行环境监测和灾害搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic lane tracking system based on multi-model fuzzy controller Automatic path and trajectory planning for laser cladding robot based on CAD Analysis of dynamic characteristics of rugged vessel in the process of hepatic perfusion A simulation method for X-ray pulsar signal based on Monte Carlo Study of audiovisual asynchrony signal processing: Robot recognition system of different ages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1