Skeleton-based Generative Adversarial Networks for Font Shape Style Transfer: Learning text style from some characters and transferring the style to any unseen characters

Thanaphon Thanusan, K. Patanukhom
{"title":"Skeleton-based Generative Adversarial Networks for Font Shape Style Transfer: Learning text style from some characters and transferring the style to any unseen characters","authors":"Thanaphon Thanusan, K. Patanukhom","doi":"10.1145/3596286.3596288","DOIUrl":null,"url":null,"abstract":"This paper presents a new font shape style transfer technique that employs a generative adversarial network (GAN) and skeleton-based input feature maps to modify a target text to match a target font shape while retaining the original text content. Our GAN model is modified from a Shape-Matching GAN which utilizes a StyleNet generator and a PatchGAN discriminator. Rather than using a base-font character images as input to the generator like other existing font transfer models, we utilize the proposed skeleton-based features as input. The experimental results show that our model can produce the unseen characters in the desired font style better than an existing method.","PeriodicalId":208318,"journal":{"name":"Proceedings of the 2023 Asia Conference on Computer Vision, Image Processing and Pattern Recognition","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 Asia Conference on Computer Vision, Image Processing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3596286.3596288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new font shape style transfer technique that employs a generative adversarial network (GAN) and skeleton-based input feature maps to modify a target text to match a target font shape while retaining the original text content. Our GAN model is modified from a Shape-Matching GAN which utilizes a StyleNet generator and a PatchGAN discriminator. Rather than using a base-font character images as input to the generator like other existing font transfer models, we utilize the proposed skeleton-based features as input. The experimental results show that our model can produce the unseen characters in the desired font style better than an existing method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于骨架的生成对抗网络,用于字体形状风格转移:从一些字符中学习文本样式,并将样式转移到任何看不见的字符
本文提出了一种新的字体形状风格转移技术,该技术采用生成对抗网络(GAN)和基于骨架的输入特征映射来修改目标文本以匹配目标字体形状,同时保留原始文本内容。我们的GAN模型是在使用StyleNet生成器和PatchGAN鉴别器的形状匹配GAN的基础上改进的。不像其他现有的字体转移模型那样使用基本字体字符图像作为生成器的输入,我们利用提出的基于骨架的特征作为输入。实验结果表明,该模型比现有方法能更好地生成所需字体样式的未见字符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Object Detection for Complex Architectural Floor Plans with Efficient Receptive Fields Skeleton-based Generative Adversarial Networks for Font Shape Style Transfer: Learning text style from some characters and transferring the style to any unseen characters Medical Image Segmentation Approach via Transformer Knowledge Distillation Self-adaptive Methods with Flexible Detection Criteria of the Battery Cell Dent Defect Improved Mask R-CNN Network Method for PV Panel Defect Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1