A Real-Time Burst Detection Method

Ryohei Ebina, Kenji Nakamura, S. Oyanagi
{"title":"A Real-Time Burst Detection Method","authors":"Ryohei Ebina, Kenji Nakamura, S. Oyanagi","doi":"10.1109/ICTAI.2011.177","DOIUrl":null,"url":null,"abstract":"Real-time burst detection over multiple window size is useful for analyzing data streams. Various burst detection methods have been proposed. However, they are not effective for real-time detection. This work proposes a new burst detection method that reduces computation by avoiding redundant data updates. It analyses an event on its occurrence, and detects the period where arrival frequency rises rapidly to the previous period. In addition, it reduces computation by suppressing data within a certain period even in the case of emergent increase of events. The effectiveness of the proposed method is evaluated by experiments with real data.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Real-time burst detection over multiple window size is useful for analyzing data streams. Various burst detection methods have been proposed. However, they are not effective for real-time detection. This work proposes a new burst detection method that reduces computation by avoiding redundant data updates. It analyses an event on its occurrence, and detects the period where arrival frequency rises rapidly to the previous period. In addition, it reduces computation by suppressing data within a certain period even in the case of emergent increase of events. The effectiveness of the proposed method is evaluated by experiments with real data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种实时突发检测方法
多窗口大小的实时突发检测对于分析数据流非常有用。人们提出了各种突发检测方法。然而,它们对实时检测并不有效。本文提出了一种新的突发检测方法,通过避免冗余数据更新来减少计算量。它对事件的发生进行分析,并检测到达频率比前一个周期迅速上升的时间段。此外,即使在突发事件增加的情况下,它也可以在一定时间内抑制数据,从而减少计算量。通过实际数据的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independence-Based MAP for Markov Networks Structure Discovery Flexible, Efficient and Interactive Retrieval for Supporting In-silico Studies of Endobacteria Recurrent Neural Networks for Moisture Content Prediction in Seed Corn Dryer Buildings Top Subspace Synthesizing for Promotional Subspace Mining RELIEF-C: Efficient Feature Selection for Clustering over Noisy Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1